University of Limerick Ollscoil Luimnigh

College of Informatics and Electronics

END-OF-TERM ASSESSMENT
Module Code: MA4002 Duration of Exam: $2 \frac{1}{2}$ hours
Module Title: Engineering Maths 2 Fraction of Total Marks: 100\%
Term: Spring 1996 Decturer: Dr. Gath
Instructions to Candidates: Answer question 1 and any three of 2, 3, 4, 5, 6, 7 .
1.(i) [4] A car has acceleration $a(t)=2+15 \sqrt{t}$ at time t. It starts from rest, at time $t=0$, from position $s=0$. Determine its velocity and position at all times $t \geq 0$.
(ii) [4] Evaluate the indefinite integral $\int \sqrt{x} \ln x d x$.
(iii) $[4] \quad$ Find $\frac{d y}{d x}$ when $y=\int_{0}^{x^{2}} \tan t d t$.
(iv) [4] Find the average value of $y=\frac{1}{x}$ on the interval $1 \leq x \leq 4$.
$(\mathbf{v})[4] \quad$ Sketch the output which results from implementing the MapleVR3 command:

```
with(student):
leftbox(x^2, x=0..1, 4);
```

(vi) [4] Express as a definite integral, and hence evaluate, the limit of the Riemann sum $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\cos c_{i}\right) \Delta x_{i}$, where P is the partition with $x_{i}=\frac{2 i}{n}$, for $i=0,1, \ldots, n$, $\Delta x_{i} \equiv x_{i}-x_{i-1}$ and $c_{i} \in\left[x_{i-1}, x_{i}\right]$.
(vii) [4] The quantities x and y are measured with relative error e_{x} and e_{y} respectively.

The quantity Q is then calculated from the formula $Q=\frac{x^{3}}{y+1}$.
Find the relative error e_{Q} in terms of e_{x}, e_{y}, x and y.
(viii) [4] Solve the initial value problem $\frac{d y}{d x}=\left(1+y^{2}\right) \cos x$, with $y(0)=0$.
(ix) [4] Use the Euler method to write down an iterative approximation of the solution of the initial value problem $y^{\prime}=x^{2}+y^{2}, y(0)=2$, choosing step size $h=0.1$.
$\mathbf{(x)}[4] \quad$ Evaluate the determinant $\left|\begin{array}{rrr}1 & 4 & 7 \\ 0 & 3 & 5 \\ 1 & 0 & -1\end{array}\right|$.
2. $[6+7+7]$ Evaluate each of the integrals:
(i) $\int \sec x d x$
(ii) $\int_{0}^{\infty} \frac{1}{x^{2}+2 x+4} d x$
(iii) $\int_{0}^{\frac{\pi}{4}} \frac{1}{4-5 \sin t} d t$

Note re (iii): $\tan \frac{\pi}{8}=\sqrt{2}-1$.
3.[20] Attempt any three of parts (i), (ii), (iii), (iv).
(i) Find the area enclosed between $y=\cosh x$ and $y=\sinh x$ for $x \geq 0$.
(ii) Find the volume of the solid of revolution that results from revolving the region, enclosed by the curves $y=\frac{3-x}{x}, x=0, y=0$ and $y=2$, about the y-axis.
(iii) Find the mass of a rod with mass density $\rho(x)=\rho_{0}(1+x)$, for $0 \leq x \leq 4$. Find the moment of inertia of this rod when it is rotating about the point $x=2$.
(iv) A particle has position vector $\mathbf{r}(t)=\left(1-3 t^{2}\right) \mathbf{i}+\left(t-3 t^{3}\right) \mathbf{j}$ at time t. Find the distance travelled by the particle between times $t=0$ and $t=2$.
4. (a) [10] Find the Taylor Series, up to and including quadratic terms, of $z=f(x, y)=x e^{2 y}+\sin \left(x+y^{2}\right)$ about the point $\left(\frac{\pi}{2}, 0\right)$.
(b) [10] The least squares line approximation to the points $(0,1),(1,2),(2,4),(3, b),(4,6)$ is $y=1+\frac{11}{10} x$. Find b.
5.(a)[10] Set up an iterative reduction formula for $I_{n} \equiv \int_{0}^{\frac{\pi}{2}} \cos ^{2 n} x d x, n=0,1,2,3, \ldots$, and hence prove that $I_{n}=\frac{(2 n)!\pi}{2^{2 n+1} n!n!}$.
(b) [10] Use Simpson's rule, with four equal subintervals (i.e. $n=2$), to find an approximation for the definite integral $\int_{0}^{1} \cosh \left(x^{2}\right) d x$. Assuming that $M_{4} \equiv \max _{x \in[0,1]}\left|\frac{d^{4}}{d x^{4}} \cosh \left(x^{2}\right)\right|<100$, find an upper bound for the error in the above approximation.
How many subintervals would be required to ensure accuracy to 20 decimal places?
6. The charge $q(t)$, at time t, in the capacitor in the $L R C$ circuit depicted below satisfies

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E(t) .
$$

Consider a circuit with an inductor with $L=1$ Henry, a resistor with $R=4$ ohms and a capacitor with $C=0.2$ Farads.
(a)[8] Write down the general solution to the homogeneous equation i.e. when the external voltage $E(t)=0$.
(b) [8] By first finding a particular solution, find the general solution to the differential equation when the external voltage $E(t)=8 \cos t$.
(c) [4] Solve the equation in (b) when the initial charge on the capacitor is $q(0)=1$ Farad and the initial current is $q^{\prime}(0)=0 \mathrm{amps}$.
7. (a) [9] Write down a system of three linear equations in two unknowns
(i) which is inconsistent;
(ii) which has a unique solution;
(iii) which has an infinite number of solutions.
(b) [11] Find the inverse of the 3×3 matrix

$$
\left[\begin{array}{rrr}
1 & -1 & 2 \\
4 & 3 & 0 \\
5 & 1 & 3
\end{array}\right]
$$

