University of Limerick Ollscoil Luimnigh

College of Informatics and Electronics

END-OF-TERM ASSESSMENT

MODULE CODE:	MA4002	DURATION OF EXAM:	$2\frac{1}{2}$ hours
MODULE TITLE:	Engineering Maths 2	FRACTION OF TOTAL MARKS:	100%
TERM:	Spring 1996	LECTURER:	Dr. E. Gath
INSTRUCTIONS TO	CANDIDATES: Answe	er question 1 and any three of 2 ,	3, 4, 5, 6, 7.

- **1.(i)**[4] A car has acceleration $a(t) = 2 + 15\sqrt{t}$ at time t. It starts from rest, at time t = 0, from position s = 0. Determine its velocity and position at all times $t \ge 0$.
- (ii)[4] Evaluate the indefinite integral $\int \sqrt{x} \ln x \, dx$.
- (iii)[4] Find $\frac{dy}{dx}$ when $y = \int_0^{x^2} \tan t \, dt$.
- (iv)[4] Find the average value of $y = \frac{1}{x}$ on the interval $1 \le x \le 4$.

(v)[4] Sketch the output which results from implementing the MapleVR3 command: with(student): leftbox(x², x=0..1, 4);

- (vi)[4] Express as a definite integral, and hence evaluate, the limit of the Riemann sum $\lim_{n \to \infty} \sum_{i=1}^{n} (\cos c_i) \Delta x_i, \text{ where } P \text{ is the partition with } x_i = \frac{2i}{n}, \text{ for } i = 0, 1, \dots, n,$ $\Delta x_i \equiv x_i - x_{i-1} \text{ and } c_i \in [x_{i-1}, x_i].$
- (vii)[4] The quantities x and y are measured with relative error e_x and e_y respectively. The quantity Q is then calculated from the formula $Q = \frac{x^3}{y+1}$. Find the relative error e_Q in terms of e_x , e_y , x and y.
- (viii)[4] Solve the initial value problem $\frac{dy}{dx} = (1+y^2)\cos x$, with y(0) = 0.
- (ix)[4] Use the *Euler method* to write down an iterative approximation of the solution of the initial value problem $y' = x^2 + y^2$, y(0) = 2, choosing step size h = 0.1.

(x)[4] Evaluate the determinant
$$\begin{vmatrix} 1 & 4 & 7 \\ 0 & 3 & 5 \\ 1 & 0 & -1 \end{vmatrix}$$
.

2.[6+7+7] Evaluate each of the integrals:

(i)
$$\int \sec x \, dx$$
 (ii) $\int_0^\infty \frac{1}{x^2 + 2x + 4} \, dx$ (iii) $\int_0^{\frac{\pi}{4}} \frac{1}{4 - 5\sin t} \, dt$
Note re (iii): $\tan \frac{\pi}{8} = \sqrt{2} - 1$.

3.[20] Attempt any three of parts (i), (ii), (iii), (iv). (i) Find the area enclosed between $y = \cosh x$ and $y = \sinh x$ for $x \ge 0$.

(ii) Find the volume of the solid of revolution that results from revolving the region, enclosed by the curves $y = \frac{3-x}{x}$, x = 0, y = 0 and y = 2, about the y-axis.

(iii) Find the mass of a rod with mass density $\rho(x) = \rho_0(1+x)$, for $0 \le x \le 4$. Find the moment of inertia of this rod when it is rotating about the point x = 2.

(iv) A particle has position vector $\mathbf{r}(t) = (1 - 3t^2)\mathbf{i} + (t - 3t^3)\mathbf{j}$ at time t. Find the distance travelled by the particle between times t = 0 and t = 2.

4. (a)[10] Find the Taylor Series, up to and including quadratic terms, of $z = f(x, y) = xe^{2y} + \sin(x + y^2)$ about the point $(\frac{\pi}{2}, 0)$.

(b)[10] The least squares line approximation to the points (0, 1), (1, 2), (2, 4), (3, b), (4, 6) is $y = 1 + \frac{11}{10}x$. Find b.

5.(a)[10] Set up an iterative reduction formula for $I_n \equiv \int_0^{\frac{\pi}{2}} \cos^{2n} x \, dx, n = 0, 1, 2, 3, \dots$, and hence prove that $I_n = \frac{(2n)!\pi}{2^{2n+1}n!n!}$.

(b)[10] Use Simpson's rule, with four equal subintervals (*i.e.* n = 2), to find an approximation for the definite integral $\int_0^1 \cosh(x^2) dx$. Assuming that $M_4 \equiv \max_{x \in [0,1]} \left| \frac{d^4}{dx^4} \cosh(x^2) \right| < 100$, find an upper bound for the error in the above approximation.

How many subintervals would be required to ensure accuracy to 20 decimal places?

6. The charge q(t), at time t, in the capacitor in the LRC circuit depicted below satisfies

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E(t)$$

Consider a circuit with an inductor with L = 1 Henry, a resistor with R = 4 ohms and a capacitor with C = 0.2 Farads.

(a)[8] Write down the general solution to the homogeneous equation *i.e.* when the external voltage E(t) = 0.

(b)[8] By first finding a particular solution, find the general solution to the differential equation when the external voltage $E(t) = 8 \cos t$.

(c)[4] Solve the equation in (b) when the initial charge on the capacitor is q(0) = 1 Farad and the initial current is q'(0) = 0 amps.

7. (a)[9] Write down a system of three linear equations in two unknowns

- (i) which is inconsistent;
- (ii) which has a unique solution;
- (iii) which has an infinite number of solutions.

(b)[11] Find the inverse of the 3×3 matrix

$$\left[\begin{array}{rrrr} 1 & -1 & 2 \\ 4 & 3 & 0 \\ 5 & 1 & 3 \end{array}\right].$$