University of Limerick Ollscoil Luimnigh

College of Informatics and Electronics

END-OF-TERM ASSESSMENT

Module Code:	MA4002	DURATION OF EXAM:	$2\frac{1}{2}$ hours					
Module Title:	Engineering Maths 2	FRACTION OF TOTAL MARKS:	100%					
TERM:	Spring 1997	LECTURER:	Dr. E. Gath					
INSTRUCTIONS TO CANDIDATES: Answer question 1 and any three of 2, 3, 4, 5, 6, 7.								

- **1.(i)**[4] A car has acceleration $a(t) = 6e^{-2t}$ at time t. It starts from rest, at time t = 0. Find its velocity for all $t \ge 0$, and determine its *average* velocity between t = 0 and t = 3.
- (ii)[4] Evaluate the indefinite integral $\int \frac{1}{x \ln x} dx$ and give two reasons why $\int_0^\infty \frac{1}{x \ln x} dx$ does not exist.

(iii)[4] Evaluate the limit
$$\lim_{x \to 2} \frac{1}{x-2} \int_2^x \tan t \, dt$$

- (iv)[4] Give the numerical output which results from implementing the Maple command: with(student): evalf(rightsum(x, x=0..3, 3));
- (v)[4] Write down, but do not evaluate, the Riemann sum corresponding to the definite integral $\int_0^3 \sin x \, dx$, taking the partition P with $x_i = \frac{3i}{n}$, for $i = 0, 1, \ldots, n$, and choosing $c_i = x_{i-1}$ (the leftmost point of each subinterval).
- (vi)[4] Find the volume of the solid of revolution that results from revolving the bounded region enclosed between the curve $y = 1 x^2$ and the x-axis, about the x-axis.

(vii)[4] Prove that
$$I_n \equiv \int_0^\infty x^{2n} e^{-x^2} dx$$
 satisfies $I_n = \left(\frac{2n-1}{2}\right) I_{n-1}$ for all $n = 1, 2, 3, \dots$

- (viii)[4] The quantities x and y are measured with relative error e_x and e_y respectively. The quantity Q is then calculated from the formula $Q = x^2 \sin y$. Find the relative error e_Q in terms of e_x , e_y , x and y.
- (ix)[4] Solve the initial value problem $\frac{dy}{dx} = \frac{y^2 + 1}{2xy}$, with y(2) = 1.

(**x**)[4] Evaluate the determinant
$$\begin{vmatrix} 1 & a & b \\ 2 & 2a & c \\ 3 & 3a & d \end{vmatrix}$$
 for any a, b, c, d .

2.[7+6+7] Evaluate each of the integrals: (i) $\int e^{2x} \cos 3x \, dx$ (ii) $\int \frac{x^3 + x^2}{x^2 - 4} \, dx$ (iii) $\int_1^2 \frac{\sqrt{x^2 - 1}}{x} \, dx$

3.[20] Attempt any three of parts (i), (ii), (iii), (iv). (i) Find the area enclosed between the circle $x^2 + y^2 = 25$ and the line x = 3, for $x \ge 3$.

(ii) Find the volume of the solid of revolution that results from revolving about the y-axis, the region enclosed between the curve $y = 10 - x - x^3$ and the x-axis, for $0 \le x \le 2$.

(iii) Find the arc-length along the curve $y = \frac{x^3}{3} + \frac{1}{4x}$ for $1 \le x \le 3$.

(iv) Find the mass of a rod with mass density $\rho(x) = 2 + \sin x$, for $0 \le x \le \frac{\pi}{2}$. Find the moment of inertia of this rod when it is rotating about the end x = 0.

4.(a)[10] Use Simpson's Rule, with four equal subintervals (*i.e.* n = 2), to find an approximation for the definite integral $\int_0^{\pi} e^{\sin x} dx$. Given that $M_4 \equiv \max_{x \in [0,\pi]} \left| \frac{d^4}{dx^4} (e^{\sin x}) \right| < 12$, find an upper bound for the error in the above approximation. How many subintervals would be required to ensure an absolute error of less than 10^{-10} ?

(b)[10] Using (i) the Euler Method and (ii) the Improved Euler Method, write down an iterative scheme to solve the initial value problem $\frac{dy}{dx} = 2y + x^2$, y(0) = 1. Taking h = 0.5, use both methods to estimate y(1).

5. (a)[10] Find the Taylor Series, up to and including quadratic terms, of $z = f(x, y) = x^2 e^y + \sin(xy)$ about the point (1, 0).

(b)[10] It is known that the quantities y and x are related by the formula $y = kx^{\alpha}$, for some unknown constants k and α . By writing this as $\ln y = \alpha \ln x + \ln k$, one can use the *method* of *least squares* to find the best-fit line relating $\ln y$ to $\ln x$ and hence find an approximation of the constants k and α .

For the given data points, (x, y) = (0.5, 1), (1, 2.6), (2, 11), (3, 30), (4, 50), use this method to find an approximation of the constants k and α .

6.(a)[10] An object of mass m, projected vertically downwards with an initial velocity v_0 , experiences a downward force of mg - kv where g is the acceleration due to gravity and k is the drag coefficient. Applying Newton's Second Law, we find that the downward velocity v satisfies the differential equation $m\frac{dv}{dt} = mg - kv$.

Solve this differential equation to find v(t) for all $t \ge 0$.

Find $\lim_{t \to \infty} v(t)$, the so called *terminal velocity*.

If the initial velocity is $v_0 = 0$, find how long it takes the object to reach 90% of the terminal velocity.

(b)[10] Solve the linear second order constant coefficient ordinary differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 4y = 4x + 1$, subject to the initial conditions y(0) = 2, y'(0) = 1.

7.(a)[5+5] Use the method of *Gauss-Jordan elimination* to find all solutions of each system of linear equations:

	x	+3y	+2z	=	1			y	-z	=	3
(i)	3x	+6y	+5z	=	1	(ii)	x	-y	+2z	=	0
	x	+6y	+3z	=	3		3x	-y	+4z	=	1

(b)[10] Find the inverse of the 3×3 matrix

$$\left(\begin{array}{rrrr} 1 & -1 & 2 \\ -1 & 3 & 4 \\ 3 & -3 & 7 \end{array}\right).$$