University of Limerick Ollscoil Luimnigh

College of Informatics and Electronics

END-OF-TERM ASSESSMENT

Module Code:	Ma4002	Duration of Exam:	$2 \frac{1}{2}$ hours
Module Title:	Engineering Maths 2	Fraction of Total Marks:	100%
Term:	Spring 1997		Lecturer:
Instructions to Candidates:	Answer question $\mathbf{1}$ and any three of 2, $\mathbf{3}, \mathbf{4 , 5 , 6 , 7 .}$		

1.(i) [4] A car has acceleration $a(t)=6 e^{-2 t}$ at time t. It starts from rest, at time $t=0$. Find its velocity for all $t \geq 0$, and determine its average velocity between $t=0$ and $t=3$.
(ii) [4] Evaluate the indefinite integral $\int \frac{1}{x \ln x} d x$ and give two reasons why $\int_{0}^{\infty} \frac{1}{x \ln x} d x$ does not exist.
(iii) [4] Evaluate the limit $\lim _{x \rightarrow 2} \frac{1}{x-2} \int_{2}^{x} \tan t d t$.
(iv) [4] Give the numerical output which results from implementing the Maple command:

```
    with(student):
    evalf(rightsum(x, x=0..3, 3));
```

$(\mathbf{v})[4] \quad$ Write down, but do not evaluate, the Riemann sum corresponding to the definite integral $\int_{0}^{3} \sin x d x$, taking the partition P with $x_{i}=\frac{3 i}{n}$, for $i=0,1, \ldots, n$, and choosing $c_{i}=x_{i-1}$ (the leftmost point of each subinterval).
(vi) [4] Find the volume of the solid of revolution that results from revolving the bounded region enclosed between the curve $y=1-x^{2}$ and the x-axis, about the x-axis.
(vii) [4] Prove that $I_{n} \equiv \int_{0}^{\infty} x^{2 n} e^{-x^{2}} d x$ satisfies $I_{n}=\left(\frac{2 n-1}{2}\right) I_{n-1}$ for all $n=1,2,3, \ldots$.
(viii) [4] The quantities x and y are measured with relative error e_{x} and e_{y} respectively. The quantity Q is then calculated from the formula $Q=x^{2} \sin y$. Find the relative error e_{Q} in terms of e_{x}, e_{y}, x and y.
(ix) [4] Solve the initial value problem $\frac{d y}{d x}=\frac{y^{2}+1}{2 x y}$, with $y(2)=1$.
$(\mathbf{x})[4] \quad$ Evaluate the determinant $\left|\begin{array}{rrr}1 & a & b \\ 2 & 2 a & c \\ 3 & 3 a & d\end{array}\right|$ for any a, b, c, d.
2. [7+6+7] Evaluate each of the integrals:
(i) $\int e^{2 x} \cos 3 x d x$
(ii) $\int \frac{x^{3}+x^{2}}{x^{2}-4} d x$
(iii) $\int_{1}^{2} \frac{\sqrt{x^{2}-1}}{x} d x$
3.[20] Attempt any three of parts (i), (ii), (iii), (iv).
(i) Find the area enclosed between the circle $x^{2}+y^{2}=25$ and the line $x=3$, for $x \geq 3$.
(ii) Find the volume of the solid of revolution that results from revolving about the y-axis, the region enclosed between the curve $y=10-x-x^{3}$ and the x-axis, for $0 \leq x \leq 2$.
(iii) Find the arc-length along the curve $y=\frac{x^{3}}{3}+\frac{1}{4 x}$ for $1 \leq x \leq 3$.
(iv) Find the mass of a rod with mass density $\rho(x)=2+\sin x$, for $0 \leq x \leq \frac{\pi}{2}$. Find the moment of inertia of this rod when it is rotating about the end $x=0$.
4.(a)[10] Use Simpson's Rule, with four equal subintervals (i.e. $n=2$), to find an approximation for the definite integral $\int_{0}^{\pi} e^{\sin x} d x$. Given that $M_{4} \equiv \max _{x \in[0, \pi]}\left|\frac{d^{4}}{d x^{4}}\left(e^{\sin x}\right)\right|<12$,
find an upper bound for the error in the above approximation.
How many subintervals would be required to ensure an absolute error of less than 10^{-10} ?
(b) [10] Using (i) the Euler Method and (ii) the Improved Euler Method, write down an iterative scheme to solve the initial value problem $\frac{d y}{d x}=2 y+x^{2}, \quad y(0)=1$.
Taking $h=0.5$, use both methods to estimate $y(1)$.
5. (a) [10] Find the Taylor Series, up to and including quadratic terms,

$$
\text { of } z=f(x, y)=x^{2} e^{y}+\sin (x y) \text { about the point }(1,0) .
$$

(b)[10] It is known that the quantities y and x are related by the formula $y=k x^{\alpha}$, for some unknown constants k and α. By writing this as $\ln y=\alpha \ln x+\ln k$, one can use the method of least squares to find the best-fit line relating $\ln y$ to $\ln x$ and hence find an approximation of the constants k and α.
For the given data points, $(x, y)=(0.5,1),(1,2.6),(2,11),(3,30),(4,50)$, use this method to find an approximation of the constants k and α.
6.(a)[10] An object of mass m, projected vertically downwards with an initial velocity v_{0}, experiences a downward force of $m g-k v$ where g is the acceleration due to gravity and k is the drag coefficient. Applying Newton's Second Law, we find that the downward velocity v satisfies the differential equation $m \frac{d v}{d t}=m g-k v$.
Solve this differential equation to find $v(t)$ for all $t \geq 0$.
Find $\lim _{t \rightarrow \infty} v(t)$, the so called terminal velocity.
If the initial velocity is $v_{0}=0$, find how long it takes the object to reach 90% of the terminal velocity.
(b) [10] Solve the linear second order constant coefficient ordinary differential equation $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4 y=4 x+1$, subject to the initial conditions $y(0)=2, y^{\prime}(0)=1$.
7.(a)[5+5] Use the method of Gauss-Jordan elimination to find all solutions of each system of linear equations:

$$
x+3 y+2 z=1
$$

$$
\text { (i) } 3 x+6 y+5 z=1
$$

$$
x+6 y+3 z=3
$$

(ii) $x-y+2 z=0$
$3 x-y+4 z=1$
(b) [10] Find the inverse of the 3×3 matrix

$$
\left(\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 3 & 4 \\
3 & -3 & 7
\end{array}\right)
$$

