University of Limerick Ollscoil Luimnigh

College of Informatics and Electronics

END-OF-TERM ASSESSMENT

Module Code:	Ma4002	Duration of Exam:	$2 \frac{1}{2}$ hours
Module Title:	Engineering Maths 2	Fraction of Total Marks:	100%
Term:	Spring 1998	Lecturer:	Dr. E. Gath

Instructions to Candidates: Answer question 1 and any three of $2,3,4,5,6,7$.
1.(i) [4] A tap drips continuously at the rate of $\frac{200}{(t+3)^{3}}$ cubic centimeters/second.

Determine the total volume that drips from the tap between times $t=0$ and $t=7$.
(ii) [4] Evaluate the indefinite integral $\int \frac{x}{x^{2}-3 x+2} d x$.
(iii) [4] Find $\frac{d y}{d x}$ when $y=\int_{0}^{3 x} \cos \left(t^{2}\right) d t$.
(iv) [4] Find the average value of $y=t e^{-t}$ on the interval $0 \leq t \leq 2$.
(v)[4] Sketch the output which results from implementing the MapleV4 command:

$$
\begin{aligned}
& \text { with(student): } \\
& \text { rightbox(2-x, } x=0 . .2,4) \text {; }
\end{aligned}
$$

(vi) [4] Express as a definite integral, and hence evaluate, the limit of the Riemann sum $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{c_{i}} \Delta x_{i}$, where P is the partition with $x_{i}=1+\frac{3 i}{n}$, for $i=0,1, \ldots, n$, $\Delta x_{i} \equiv x_{i}-x_{i-1}$ and $c_{i} \in\left[x_{i-1}, x_{i}\right]$.
(vii) [4] Find all first and second partial derivatives of $f(x, y)=\tan (x y)$.
(viii) [4] Solve the initial value problem $\frac{d y}{d x}=\frac{y^{2}}{x}$, with $y(1)=1$.
(ix) [4] Use the Euler method to write down an iterative approximation of the solution of the initial value problem $y^{\prime}=(x+y)^{2}, y(0)=1$, choosing step size $h=0.2$.
$\mathbf{(x)}[4] \quad$ Evaluate the determinant $\left|\begin{array}{rrr}3 & -1 & 2 \\ 1 & 0 & 1 \\ 1 & 2 & 2\end{array}\right|$.
2. $[6+7+7]$ Evaluate each of the integrals:
(i) $\int_{0}^{\frac{\pi}{4}} \frac{\sin t \cos t}{1+2 \cos ^{2} t} d t$
(ii) $\int_{0}^{1} \frac{x^{2}}{x^{2}-6 x+10} d x$
(iii) $\int \sqrt{x}(\ln x)^{2} d x$
3.[20] Attempt any three of parts (i), (ii), (iii), (iv).
(i) Find the area enclosed between $y=\sec x$ and $y=\sqrt{2}$ (-specifically the area of the component containing the point $(0,1))$.
(ii) Find the volume of the solid of revolution that results from revolving the region, enclosed by the curve $x=y^{2}-3 y$ and the y-axis, about the y-axis.
(iii) Find the mass of a rod with mass density $\rho(x)=\rho_{0}(2+\sqrt{x})$, for $0 \leq x \leq 4$.

Find the moment of inertia of this rod when it is rotating about the point $x=1$.
(iv) A particle has position vector $\mathbf{r}(t)=e^{-t} \sin 2 t \mathbf{i}+e^{-t} \cos 2 t \mathbf{j}$ at time t. Find the distance travelled by the particle between times $t=0$ and $t=1$.
4. (a) [10] Given that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$, find $\int_{0}^{\infty} x^{2} e^{-x^{2}} d x$. (Hint: use integration by parts with $u=x$ and $d v=x e^{-x^{2}} d x$.)
Prove that $I_{n} \equiv \int_{0}^{\infty} x^{2 n} e^{-x^{2}} d x$ satisfies $I_{n}=\left(\frac{2 n-1}{2}\right) I_{n-1}$ for all $n=1,2,3, \ldots$.
Evaluate I_{2} and I_{3}. Prove that $I_{n}=\frac{(2 n)!\sqrt{\pi}}{2^{2 n+1} n!}$ for all $n=1,2,3, \ldots$.
(b) [10] Find the Taylor Series, up to and including quadratic terms,

$$
\text { of } z=f(x, y)=\ln \left(x^{2}+y^{2}\right)+\cosh (x-y) \text { about the point }(1,1) .
$$

5.(a) [10] The least squares line approximation to the points $(0,4),(1,0),(2, a),(5, b),(7,-27)$ is $y=\frac{23}{5}-4 x$. Find a and b.
(b) [10] Use Simpson's rule, with four equal subintervals (i.e. $n=2$), to find an approximation for the definite integral $\int_{0}^{1} \cos \left(e^{x}\right) d x$. Assuming that $M_{4} \equiv \max _{x \in[0,1]}\left|\frac{d^{4}}{d x^{4}} \cos \left(e^{x}\right)\right|<60$, find an upper bound for the error in the above approximation. How many subintervals would be required to ensure an absolute error of less than 10^{-8} ?
6. (a) [10] The current $i(t)$, at time t, in an $L R$ circuit with constant external voltage E_{0} satisfies the first order linear differential equation

$$
L \frac{d i}{d t}+R i=E_{0} .
$$

Suppose the initial current $i(0)$ is zero. By finding an appropriate integrating factor, solve this differential equation to find $i(t)$ for all $t \geq 0$ and show that as $t \rightarrow \infty, i(t)$ tends to its constant Ohm's law value.
(b) [10] Find the general solution of the nonhomogeneous linear second order constant coefficient ordinary differential equation $y^{\prime \prime}+2 y^{\prime}+y=2 e^{-x}$.
7. (a) [5+5] Use the method of Gauss-Jordan elimination to find all solutions of each system of linear equations:
$x+y-2 z=1$
(i) $3 x-y+z=4$
$x-3 y+5 z=3$
(ii) $x+2 y+z=1$
$3 x+7 y-3 z=2$
(b) [10] Find the inverse of the 3×3 matrix

$$
\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & 4 & 1 \\
-2 & 9 & 1
\end{array}\right)
$$

