University of Limerick Ollscoil Luimnigh

College of Informatics and Electronics

END-OF-TERM ASSESSMENT

MODULE CODE:	MA4002	DURATION OF EXAM:	$2\frac{1}{2}$ hours
MODULE TITLE:	Engineering Maths 2	FRACTION OF TOTAL MARKS:	100%
TERM:	Spring 1998	LECTURER:	Dr. E. Gath
INSTRUCTIONS TO	CANDIDATES: Answe	er question 1 and any three of $2, 3$	3, 4, 5, 6, 7.

1.(i)[4] A tap drips continuously at the rate of $\frac{200}{(t+3)^3}$ cubic centimeters/second. Determine the total volume that drips from the tap between times t = 0 and t = 7.

(ii)[4] Evaluate the indefinite integral $\int \frac{x}{x^2 - 3x + 2} dx$.

(iii)[4] Find
$$\frac{dy}{dx}$$
 when $y = \int_0^{3x} \cos(t^2) dt$.

(iv)[4] Find the average value of $y = te^{-t}$ on the interval $0 \le t \le 2$.

(v)[4] Sketch the output which results from implementing the MapleV4 command: with(student): rightbox(2-x, x=0..2, 4);

- (vi)[4] Express as a definite integral, and hence evaluate, the limit of the Riemann sum $\lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{c_i} \Delta x_i, \text{ where } P \text{ is the partition with } x_i = 1 + \frac{3i}{n}, \text{ for } i = 0, 1, \dots, n,$ $\Delta x_i \equiv x_i - x_{i-1} \text{ and } c_i \in [x_{i-1}, x_i].$
- (vii)[4] Find all first and second partial derivatives of $f(x, y) = \tan(xy)$.

(viii)[4] Solve the initial value problem $\frac{dy}{dx} = \frac{y^2}{x}$, with y(1) = 1.

(ix)[4] Use the *Euler method* to write down an iterative approximation of the solution of the initial value problem $y' = (x + y)^2$, y(0) = 1, choosing step size h = 0.2.

(x)[4] Evaluate the determinant
$$\begin{vmatrix} 3 & -1 & 2 \\ 1 & 0 & 1 \\ 1 & 2 & 2 \end{vmatrix}$$
.

2.[6+7+7] Evaluate each of the integrals: $(1) \int_{-\pi}^{\pi} \sin t \cos t \quad \mu \quad (1) \int_{-\pi}^{1} x^{2} \quad \mu \quad (1)$

(i)
$$\int_0^4 \frac{\sin t \cos t}{1 + 2\cos^2 t} dt$$
 (ii) $\int_0^1 \frac{x}{x^2 - 6x + 10} dx$ (iii) $\int \sqrt{x} (\ln x)^2 dx$

 $\mathbf{3.}$ [20] Attempt any three of parts (i), (ii), (iii), (iv).

(i) Find the area enclosed between $y = \sec x$ and $y = \sqrt{2}$ (-specifically the area of the component containing the point (0, 1)).

(ii) Find the volume of the solid of revolution that results from revolving the region, enclosed by the curve $x = y^2 - 3y$ and the y-axis, about the y-axis.

(iii) Find the mass of a rod with mass density $\rho(x) = \rho_0(2 + \sqrt{x})$, for $0 \le x \le 4$. Find the moment of inertia of this rod when it is rotating about the point x = 1.

(iv) A particle has position vector $\mathbf{r}(t) = e^{-t} \sin 2t \, \mathbf{i} + e^{-t} \cos 2t \, \mathbf{j}$ at time t. Find the distance travelled by the particle between times t = 0 and t = 1.

4. (a)[10] Given that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$, find $\int_0^\infty x^2 e^{-x^2} dx$. (Hint: use integration by parts with u = x and $dv = x e^{-x^2} dx$.) Prove that $I_n \equiv \int_0^\infty x^{2n} e^{-x^2} dx$ satisfies $I_n = \left(\frac{2n-1}{2}\right) I_{n-1}$ for all $n = 1, 2, 3, \ldots$ Evaluate I_2 and I_3 . Prove that $I_n = \frac{(2n)!\sqrt{\pi}}{2^{2n+1}n!}$ for all $n = 1, 2, 3, \ldots$

(b)[10] Find the Taylor Series, up to and including quadratic terms,

of $z = f(x, y) = \ln(x^2 + y^2) + \cosh(x - y)$ about the point (1, 1).

5.(a)[10] The least squares line approximation to the points (0, 4), (1, 0), (2, a), (5, b), (7, -27) is $y = \frac{23}{5} - 4x$. Find a and b.

(b)[10] Use Simpson's rule, with four equal subintervals (*i.e.* n = 2), to find an approximation for the definite integral $\int_0^1 \cos(e^x) dx$. Assuming that $M_4 \equiv \max_{x \in [0,1]} \left| \frac{d^4}{dx^4} \cos(e^x) \right| < 60$,

find an upper bound for the error in the above approximation.

How many subintervals would be required to ensure an absolute error of less than 10^{-8} ?

6.(a)[10] The current i(t), at time t, in an LR circuit with constant external voltage E_0 satisfies the first order linear differential equation

$$L\frac{di}{dt} + Ri = E_0.$$

Suppose the initial current i(0) is zero. By finding an appropriate integrating factor, solve this differential equation to find i(t) for all $t \ge 0$ and show that as $t \to \infty$, i(t) tends to its constant Ohm's law value.

(b)[10] Find the general solution of the nonhomogeneous linear second order constant coefficient ordinary differential equation $y'' + 2y' + y = 2e^{-x}$.

7.(a)[5+5] Use the method of *Gauss-Jordan elimination* to find all solutions of each system of linear equations:

	x	+y	-2z	=	1		x	+3y	-4z	=	0
(i)	3x	-y	+z	=	4	(ii)	x	+2y	+z	=	1
	x	-3y	+5z	=	3		3x	+7y	-3z	=	2

(b)[10] Find the inverse of the 3×3 matrix

$$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 4 & 1 \\ -2 & 9 & 1 \end{array}\right).$$