University of Limerick Ollscoil Luimnigh

College of Informatics and Electronics

END-OF-TERM ASSESSMENT
Module Code: MA4002 Duration of Exam: $2 \frac{1}{2}$ hours
Module Title: Engineering Maths 2 Fraction of Total Marks: 100\%
Term: Spring 1999 Decturer: E. Gath
Instructions to Candidates: Answer question 1 and any three of $2,3,4,5,6,7$.
1.(i) [4] An object moves with acceleration $a=10 e^{-\frac{t}{10}}$ at time t. It starts from rest, at time $t=0$, from position $s=1000$. Determine its velocity and position at all times $t \geq 0$.
(ii) [4] Evaluate the indefinite integral $\int x^{3} \ln x d x$.
(iii) [4] Evaluate the limit $\lim _{x \rightarrow 4}\left(\frac{1}{x-4} \int_{4}^{x} \tan (3 t) d t\right)$.
(iv) [4] Write down, but do not evaluate, the Riemann sum corresponding to the definite integral $\int_{0}^{\pi} \cos x d x$, taking the partition P with $x_{i}=\frac{i \pi}{n}$, for $i=0,1, \ldots, n$, and choosing $c_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)$ (the mid-point of each subinterval).
(v)[4] Write down the MapleVR4 command which gives the Rectangular Rule approximation of the integral $\int_{0}^{3} e^{x^{2}} d x$, with 3000 subintervals.
(vi) [4] Find the volume of the solid of revolution that results from revolving about the x-axis, the bounded region enclosed between the curve $y=5 x^{2}$ and the y-axis, for $0 \leq y \leq 5$.
(vii) [4] Using the Improved Euler method, with step size $h=0.2$, write down an iterative scheme which approximates the solution of the initial value problem $y^{\prime}=x-y^{3}, \quad y(0)=2$.
(viii) [4] The quantities x and y are measured with relative error e_{x} and e_{y} respectively. The quantity Q is then calculated from the formula $Q=y \cos (2 x+3 y)$. Find the relative error e_{Q} in terms of e_{x}, e_{y}, x and y.
(ix) [4] Solve the initial value problem $\frac{d y}{d x}+2 y=e^{-x}$, with $y(0)=2$.
1.(\mathbf{x}) [4] For which value of β has the system of equations below an infinite number of solutions?

$$
\begin{gathered}
x+3 y+2 z=1 \\
2 x-y+z=1 \\
x+\beta y+5 z=2
\end{gathered}
$$

2. $[6+7+7]$ Evaluate each of the integrals:
(i) $\int \frac{e^{3 t}-e^{-t}}{e^{3 t}+3 e^{-t}+6} d t$
(ii) $\int_{0}^{\frac{\pi}{4}} x \sec ^{2} x d x$
(iii) $\int_{0}^{\frac{\pi}{4}} \frac{1}{4-5 \sin t} d t$

Note re (iii): $\tan \frac{\pi}{8}=\sqrt{2}-1$.
3.[20] Attempt any three of parts (i), (ii), (iii), (iv).
(i) Find the area enclosed between $y=2 \cosh x$ and $y=e^{x}$ for $x \geq 0$.
(ii) Find the volume of the solid of revolution that results from revolving about the y-axis, the region enclosed between the curve $y=14-3 x-x^{3}$ and the x-axis, for $0 \leq x \leq 2$.
(iii) Find the arc-length along the curve $x=\frac{y^{3}}{6}+\frac{1}{2 y}$ for $1 \leq y \leq 2$.
(iv) Find the mass and the centre of mass of a rod with mass density $\rho(x)=\sqrt{4-x^{2}}$, for $0 \leq x \leq 1$.
4.(a)[10] Prove that $I_{n} \equiv \int_{0}^{\frac{\pi}{2}}(\cos x)^{2 n+1} d x, n=0,1,2,3, \ldots$, satisfies the iteration $I_{n+1}=\left(\frac{2 n+2}{2 n+3}\right) I_{n}$. Hence prove that $I_{n}=\frac{2^{2 n}(n!)^{2}}{(2 n+1)!}$.
(b) [10] Find the least squares line approximation to the points $(1,4),(2,4),(3,7),(5,8)$, $(7,8)$. Plot these points and the line in the same graph.
5.(a) [8] Find the Taylor Series, up to and including quadratic terms, of $z=f(x, y)=y^{2} e^{x}+\sin (3 x+y)$ about the point $(0, \pi)$.
(b) $[6+4+2]$ Prove that $M_{2} \equiv \max _{x \in[0,1]}\left|\frac{d^{2}}{d x^{2}} \ln \left(x^{2}+1\right)\right|=2$, that is the maximum value of the second derivative of $\ln \left(x^{2}+1\right)$, on the interval $0 \leq x \leq 1$, is 2 .

Find an upper bound on the error for the Trapezoidal Rule approximation of the definite integral $\int_{0}^{1} \ln \left(x^{2}+1\right) d x$ using n subintervals.
How many subintervals would be required to ensure an error of less than 10^{-10} ?
6. The charge $q(t)$, at time t, in the capacitor in the $L R C$ circuit depicted below satisfies

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E(t)
$$

Consider a circuit with an inductor with $L=1$ Henry, a resistor with $R=2$ ohms and a capacitor with $C=0.2$ Farads.
(a)[8] Write down the general solution to the homogeneous equation i.e. when the external voltage $E(t)=0$. Sketch a typical solution.
(b) [8] By first finding a particular solution, find the general solution to the differential equation when the external voltage $E(t)=5 \sin t$.
(c)[4] Solve the equation in (b) when the initial charge on the capacitor is $q(0)=1$ Farad and the initial current is $q^{\prime}(0)=0 \mathrm{amps}$.
7. (a)[6] Write down a system of four linear equations in two unknowns
(i) which is inconsistent;
(ii) which has a unique solution;
(iii) which has an infinite number of solutions.
(b) $[8+3+3]$ Find the inverse matrix A^{-1} of the 3×3 matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 3 & -1
\end{array}\right]
$$

Find the matrix $A A^{-1}$. Evaluate the determinant $\operatorname{det} A$.

