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1.(i)[4] An object moves with acceleration a = 10e−
t
10 at time t. It starts from rest,

at time t = 0, from position s = 1000. Determine its velocity and position at
all times t ≥ 0.

(ii)[4] Evaluate the indefinite integral
∫

x3 ln x dx.

(iii)[4] Evaluate the limit lim
x→4

( 1
x− 4

∫ x

4
tan(3t) dt

)

.

(iv)[4] Write down, but do not evaluate, the Riemann sum corresponding to the definite

integral
∫ π

0
cos x dx, taking the partition P with xi =

iπ
n

, for i = 0, 1, . . . , n,

and choosing ci = 1
2(xi−1 + xi) (the mid-point of each subinterval).

(v)[4] Write down the MapleVR4 command which gives the Rectangular Rule

approximation of the integral
∫ 3

0
ex2

dx, with 3000 subintervals.

(vi)[4] Find the volume of the solid of revolution that results from revolving about
the x-axis, the bounded region enclosed between the curve y = 5x2 and the y-axis,
for 0 ≤ y ≤ 5.

(vii)[4] Using the Improved Euler method, with step size h = 0.2, write down an
iterative scheme which approximates the solution of the initial value problem
y′ = x− y3, y(0) = 2.

(viii)[4] The quantities x and y are measured with relative error ex and ey respectively.
The quantity Q is then calculated from the formula Q = y cos(2x + 3y).
Find the relative error eQ in terms of ex, ey, x and y.

(ix)[4] Solve the initial value problem
dy
dx

+ 2y = e−x, with y(0) = 2.

(continued over....)
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1.(x)[4] For which value of β has the system of equations below an infinite number
of solutions?

x +3y +2z = 1
2x −y +z = 1
x +βy +5z = 2

2.[6+7+7] Evaluate each of the integrals:

(i)
∫ e3t − e−t

e3t + 3e−t + 6
dt (ii)

∫ π
4

0
x sec2 x dx (iii)

∫ π
4

0

1
4− 5 sin t

dt

Note re (iii): tan π
8 =

√
2− 1.

3.[20] Attempt any three of parts (i), (ii), (iii), (iv).
(i) Find the area enclosed between y = 2 cosh x and y = ex for x ≥ 0.

(ii) Find the volume of the solid of revolution that results from revolving about the y-axis,
the region enclosed between the curve y = 14− 3x− x3 and the x-axis, for 0 ≤ x ≤ 2.

(iii) Find the arc-length along the curve x =
y3

6
+

1
2y

for 1 ≤ y ≤ 2.

(iv) Find the mass and the centre of mass of a rod with mass density ρ(x) =
√

4− x2,
for 0 ≤ x ≤ 1.

4.(a)[10] Prove that In ≡
∫ π

2

0
(cos x)2n+1 dx, n = 0, 1, 2, 3, . . ., satisfies the iteration

In+1 =
(2n + 2

2n + 3

)

In. Hence prove that In =
22n (n!)2

(2n + 1)!
.

(b)[10] Find the least squares line approximation to the points (1, 4), (2, 4), (3, 7), (5, 8),
(7, 8). Plot these points and the line in the same graph.
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5.(a)[8] Find the Taylor Series, up to and including quadratic terms,

of z = f(x, y) = y2ex + sin(3x + y) about the point (0, π).

(b)[6+4+2] Prove that M2 ≡ max
x∈[0,1]

∣

∣

∣

∣

d2

dx2 ln(x2 + 1)
∣

∣

∣

∣

= 2, that is the maximum value of the

second derivative of ln(x2 + 1), on the interval 0 ≤ x ≤ 1, is 2.

Find an upper bound on the error for the Trapezoidal Rule approximation of the definite in-

tegral
∫ 1

0
ln(x2 + 1) dx using n subintervals.

How many subintervals would be required to ensure an error of less than 10−10?

6. The charge q(t), at time t, in the capacitor in the LRC circuit depicted below satisfies

L
d2q
dt2

+ R
dq
dt

+
q
C

= E(t).

Consider a circuit with an inductor with L = 1 Henry, a resistor with R = 2 ohms and a
capacitor with C = 0.2 Farads.

(a)[8] Write down the general solution to the homogeneous equation i.e. when the external
voltage E(t) = 0. Sketch a typical solution.

(b)[8] By first finding a particular solution, find the general solution to the differential equa-
tion when the external voltage E(t) = 5 sin t.

(c)[4] Solve the equation in (b) when the initial charge on the capacitor is q(0) = 1 Farad
and the initial current is q′(0) = 0 amps.
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7. (a)[6] Write down a system of four linear equations in two unknowns

(i) which is inconsistent;

(ii) which has a unique solution;

(iii) which has an infinite number of solutions.

(b)[8+3+3] Find the inverse matrix A−1 of the 3× 3 matrix

A =









1 0 1
1 1 0
1 3 −1









.

Find the matrix AA−1. Evaluate the determinant detA.


