University of Limerick Ollscoil Luimnigh

College of Informatics and Electronics

END-OF-TERM ASSESSMENT

Module Code:	MA4002	DURATION OF EXAM:	$2\frac{1}{2}$ hours
MODULE TITLE:	Engineering Maths 2	FRACTION OF TOTAL MARKS:	100%
TERM:	Spring 1999	LECTURER:	Dr. E. Gath
INSTRUCTIONS TO	CANDIDATES: Answe	er question 1 and any three of $2, 3$	3, 4, 5, 6, 7.

- **1.(i)**[4] An object moves with acceleration $a = 10e^{-\frac{t}{10}}$ at time t. It starts from rest, at time t = 0, from position s = 1000. Determine its velocity and position at all times $t \ge 0$.
- (ii)[4] Evaluate the indefinite integral $\int x^3 \ln x \, dx$.

(iii)[4] Evaluate the limit
$$\lim_{x \to 4} \left(\frac{1}{x-4} \int_4^x \tan(3t) dt \right)$$
.

- (iv)[4] Write down, but do not evaluate, the Riemann sum corresponding to the definite integral $\int_0^{\pi} \cos x \, dx$, taking the partition P with $x_i = \frac{i\pi}{n}$, for $i = 0, 1, \ldots, n$, and choosing $c_i = \frac{1}{2}(x_{i-1} + x_i)$ (the mid-point of each subinterval).
- (v)[4] Write down the MapleVR4 command which gives the *Rectangular Rule* approximation of the integral $\int_0^3 e^{x^2} dx$, with 3000 subintervals.
- (vi)[4] Find the volume of the solid of revolution that results from revolving about the x-axis, the bounded region enclosed between the curve $y = 5x^2$ and the y-axis, for $0 \le y \le 5$.
- (vii)[4] Using the Improved Euler method, with step size h = 0.2, write down an iterative scheme which approximates the solution of the initial value problem $y' = x y^3$, y(0) = 2.
- (viii)[4] The quantities x and y are measured with relative error e_x and e_y respectively. The quantity Q is then calculated from the formula $Q = y \cos(2x + 3y)$. Find the relative error e_Q in terms of e_x , e_y , x and y.

(ix)[4] Solve the initial value problem
$$\frac{dy}{dx} + 2y = e^{-x}$$
, with $y(0) = 2$.

(continued over....)

1.(x)[4] For which value of β has the system of equations below an infinite number of solutions?

2.[6+7+7] Evaluate each of the integrals:

(i)
$$\int \frac{e^{3t} - e^{-t}}{e^{3t} + 3e^{-t} + 6} dt$$
 (ii) $\int_0^{\frac{\pi}{4}} x \sec^2 x \, dx$ (iii) $\int_0^{\frac{\pi}{4}} \frac{1}{4 - 5 \sin t} \, dt$
Note re (iii): $\tan \frac{\pi}{8} = \sqrt{2} - 1$.

3.[20] Attempt any three of parts (i), (ii), (iii), (iv). (i) Find the area enclosed between $y = 2 \cosh x$ and $y = e^x$ for $x \ge 0$.

(ii) Find the volume of the solid of revolution that results from revolving about the y-axis, the region enclosed between the curve $y = 14 - 3x - x^3$ and the x-axis, for $0 \le x \le 2$.

(iii) Find the arc-length along the curve $x = \frac{y^3}{6} + \frac{1}{2y}$ for $1 \le y \le 2$.

(iv) Find the mass and the centre of mass of a rod with mass density $\rho(x) = \sqrt{4 - x^2}$, for $0 \le x \le 1$.

4.(a)[10] Prove that $I_n \equiv \int_0^{\frac{\pi}{2}} (\cos x)^{2n+1} dx$, n = 0, 1, 2, 3, ..., satisfies the iteration $I_{n+1} = \left(\frac{2n+2}{2n+3}\right) I_n$. Hence prove that $I_n = \frac{2^{2n} (n!)^2}{(2n+1)!}$.

(b)[10] Find the least squares line approximation to the points (1,4), (2,4), (3,7), (5,8), (7,8). Plot these points and the line in the same graph.

5.(a)[8] Find the Taylor Series, up to and including quadratic terms, of $z = f(x, y) = y^2 e^x + \sin(3x + y)$ about the point $(0, \pi)$.

(b)[6+4+2] Prove that $M_2 \equiv \max_{x \in [0,1]} \left| \frac{d^2}{dx^2} \ln(x^2 + 1) \right| = 2$, that is the maximum value of the second derivative of $\ln(x^2 + 1)$, on the interval $0 \le x \le 1$, is 2.

Find an upper bound on the error for the *Trapezoidal Rule* approximation of the definite integral $\int_0^1 \ln(x^2 + 1) dx$ using *n* subintervals.

How many subintervals would be required to ensure an error of less than 10^{-10} ?

6. The charge q(t), at time t, in the capacitor in the LRC circuit depicted below satisfies

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = E(t).$$

Consider a circuit with an inductor with L = 1 Henry, a resistor with R = 2 ohms and a capacitor with C = 0.2 Farads.

(a)[8] Write down the general solution to the homogeneous equation *i.e.* when the external voltage E(t) = 0. Sketch a typical solution.

(b)[8] By first finding a particular solution, find the general solution to the differential equation when the external voltage $E(t) = 5 \sin t$.

(c)[4] Solve the equation in (b) when the initial charge on the capacitor is q(0) = 1 Farad and the initial current is q'(0) = 0 amps.

- 7. (a)[6] Write down a system of four linear equations in two unknowns
 - (i) which is inconsistent;
 - (ii) which has a unique solution;
 - (iii) which has an infinite number of solutions.

(b)[8+3+3] Find the inverse matrix A^{-1} of the 3 \times 3 matrix

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 3 & -1 \end{array} \right].$$

Find the matrix AA^{-1} . Evaluate the determinant det A.