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1 (a) A rocket has accelerationa =
d2s
dt2

= 20 + 30
√

t metres/second2 at

time t. It starts from rest at timet = 0. How far does it travel in the

first 4 seconds? 4%

(b) Give the numerical output which results from implementing the Maple

command:

with(student):

evalf(leftsum(xˆ2,x=0..2, 4)); 4%

(c) State whether the given integral converges or diverges and justify your

claim:
∫ 1

−1

2x + 2
x2 + 2x

dx. 4%

(d) Prove thatIn ≡
∫ 1

0
xnex dx satisfies the iterative equation

In = e− nIn−1 for n ≥ 1. (Hint: integrate by parts.) 4%

(e) Find all first and second partial derivatives of

f(x, y) = cos(x2 + y). 4%

(f) Using theImproved Euler method, with step sizeh = 0.2, write down

an iterative scheme which approximates the solution of the initial value

problemy′ = x + ln(y), y(0) = 1. 4%

(g) Find the general solution of the differential equation
dy
dx

+
2
x
y = 3. 4%

(h) For which value ofβ has the system of equations below an infinite

number of solutions?
x +y +βz = 3
x +3z = 1

2x −y = 0
4%
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2 Answer part (a) andany twoof parts (b), (c), (d):

(a) Find the area of the region betweeny =
1

4x2 + 9
and thex-axis, for

x ≥ 0. 5%

(b) A solid of revolution is generated by revolving about thex-axis the

area bounded betweenx = 5y3 + 3y and they-axis for0 ≤ y ≤ 1.

Find the volume of the solid so obtained. (Hint: use cylindrical shells.) 7%

(c) Find the arc-length along the curvey =
x2

8
− ln x for 1 ≤ x ≤ 2. 7 %

(d) Find the mass and the centre of mass of a rod with mass density

ρ(x) = 1 + cos x, for 0 ≤ x ≤ π
2 . 7%

3 The chargeq(t), at time t, in the capacitor in theLRC circuit depicted

below satisfies

L
d2q
dt2

+ R
dq
dt

+
q
C

= E(t).

Consider a circuit with an inductor withL = 1 Henry, a resistor withR = 6
ohms and a capacitor withC = 0.1 Farads.

(a) Write down the general solution to the homogeneous equationi.e.

when the external voltageE(t) = 0. Sketch a typical solution. 8%

(b) By first finding a particular solution, find the general solution to the

differential equation when the external voltageE(t) = 39 cos t. 7 %

(c) Solve the equation in (b) when the initial charge on the capacitor is

q(0) = 4 Farad and the initial current isq′(0) = 0 amps. 4%
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4 (a) Find the Taylor Series, up to and including quadratic terms,

of z = f(x, y) = ln(x2 + 2y2) about the point(1, 1). 10%

(b) The least squares line approximation to the points(0, 14), (1, a), (3, b),
(4, 2), (6, 0) is y = 16− 3x. Finda andb. 9%

5 (a) Evaluate the matrix product







2 0
3 1
0 4







(

1 −1 2 −2
3 0 2 0

)

.

4%

(b) Evaluate the determinant
∣

∣

∣

∣

∣

∣

∣

3 2 1
0 1 −1
6 1 2

∣

∣

∣

∣

∣

∣

∣

.

5%

(c) Find the inverse of the3× 3 matrix 10%






1 3 −1
0 −2 3
2 1 5





 .
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