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1 (a) A car has accelerationa =
d2s
dt2

= e−0.1t metres/second2 at timet.

It starts from rest at timet = 0. How far does it travel in the first 10

seconds? 4%

(b) Sketch the output that results from implementing the Maple command:

with(student):

rightbox(2*x-1,x=0..3, 3); 4%

(c) Prove thatIn ≡
∫

cosn x dx satisfies the iterative reduction equation

In =
n− 1

n
In−2 +

1
n

cosn−2 sin x for n ≥ 2.

(Hint: integrate by parts withu = cosn−1 x anddv = cos x dx.) 4%

(d) Find the volume when the area enclosed betweeny = cos x and the

x-axis is revolved about thex-axis for0 ≤ x ≤ π
2 . 4%

(e) Use partial derivatives and the method of linearisation to find the ap-

proximate percentage change inw =
x5z3

y2 if x increases by1%,

y increases by3% andz decreases by2%. 4%

(f) Using theEuler method, with step sizeh = 0.2, to approximatey(0.6)
wherey(t) is the solution of the initial value problemy′ = tan(xy),
y(0) = 0.5. 4%

(g) Find the general solution of the differential equation
dy
dx

=
cos2 y

x
. 4%

(h) Evaluate the determinant
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2 Answer part (a) andany twoof parts (b), (c), (d):

(a) Find the area of the region betweeny = sin3 x cos2 x and thex-axis,

for 0 ≤ x ≤ π
2 . 5%

(b) A solid of revolution is generated by revolving about they-axis the

area bounded betweeny = 3x − x2 andy = x for 0 ≤ x ≤ 2. Find

the volume of the solid so obtained. (Hint: use cylindrical shells.) 7%

(c) A particle moving in an outward spiral has position vector

r(t) = et cos 2t i + et sin 2t j. Find the arc-length along the curve

(distance travelled) between timest = 0 andt = π. 7 %

(d) Find the mass and the centre of mass of a rod with mass density

ρ(x) =
4

x2 + 1
, for 0 ≤ x ≤ 1. 7%

3 A mass ofm kg is attached to a spring and a dashpot. The spring has Hooke

constantk N/m. The displacement of the spring at timet seconds isx(t)
metres and its velocityv(t) = dx

dt m/s. We assume that the dashpot exerts a

damping force−cv N wherec is a constant. We may also subject the mass

to an external forceF (t) N. Applying Newton’s second law of motion, the

resulting equation of motion is

m
d2x
dt2

+ c
dx
dt

+ kx = F (t).

(a) Consider a mass ofm = 1 and Hooke constantk = 9. If the dashpot is

removed and there is no forcing, find theamplitudeof the oscillation if

the initial displacement isx(0) = 1 and the initial velocity isv(0) = 6. 6%

(b) If a dashpot with constantc = 6 is applied to the above system find the

displacement at all timest ≥ 0, subject to the same initial conditions. 7%

(c) Assume the same values ofm, k andc and suppose that an external

forceF (t) = 27t2 is now also applied to the mass. Find the general

solution for the displacementx(t) at all timest ≥ 0. 6%
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4 (a) Find the Taylor Series, up to and including quadratic terms,

of z = f(x, y) =
xy

2x + 3y
about the point(2,−1). 10%

(b) Find the least squares line approximation to the points(−1, 11), (1, 8),
(2, 2) and(5,−4). Sketch the points and the least squares line in the

one graph. 7+2%

5 (a) Find all solutions of each system of linear equations:

(i)

x −y −z = 2
x +3y +2z = 4

2y +3z = 4
(ii)

x +2y −z = 1
2x +z = 3
3x −2y +3z = 5 5%+5%

(b) Find the inverse of the3× 3 matrix 9%






1 1 −1
−1 −2 1
−1 5 0





 .
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