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1 (a) A car has acceleration a =
d2s

dt2
= e−0.2t metres/second2 at time t.

The initial velocity at time t = 0 is v =
ds

dt
= 10 metres/second.

How far does it travel in the first 10 seconds? 4%

(b) Evaluate the given integral or show that it diverges:
∫ 2

0

dx

x2/3
. 4%

(c) Find the volume of the solid obtained by rotating the plane region
bounded by the curve y =

√
sin x and the x-axis for 0 ≤ x ≤ π, about

the x-axis. 4%

(d) Obtain an iterative reduction formula for In =

∫ 1

0

xne−x dx. (Hint:

integrate by parts.) Evaluate I0. Then, using the reduction formula
obtained, evaluate I2. 4%

(e) Find all first and second partial derivatives of f(x, y) = exy. 4%

(f) Write down the iterative scheme of the Improved Euler method applied
to the initial value problem y′ = −xy, y(0) = 1 with step size h = 0.4.
Evaluate the approximation of y(0.4) obtained using this scheme. 4%

(g) Solve the initial value problem
dy

dx
=

2 xy

1 + x2
with y(0) = −1. 4%

(h) Evaluate the determinant

∣∣∣∣∣∣∣

2 1 2

1 0 3

−1 3 −4

∣∣∣∣∣∣∣
. 4%

2 Answer part (a) and any two of parts (b), (c), (d):

(a) Find the area of the region between y =
2x

1 + x2
and the x-axis, for

0 ≤ x ≤ 1. 5%

(b) A solid of revolution is obtained by rotating about the y-axis the area
bounded between y = cos x and the x-axis for 0 ≤ x ≤ π

2
. Find the

volume of the solid obtained. (Hint: use cylindrical shells.) 7%

(c) Find the arc-length along the curve y =
ln x

2
− x2

4
for 1 ≤ x ≤ e. 7%

(d) Find the mass and the centre of mass of a rod with mass density

ρ(x) =
1

(x + 1)(x + 2)
for 0 ≤ x ≤ 2. 7%
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3 (a) Find the general solutions of the given differential equations: 4%+4%
(i) y′′ + 3y′ + 2y = 0, (ii) y′′ + 4y = 0.

(b) Find a particular solution to the given differential equation: 5%+3%
y′′ + 3y′ + 2y = 4x2.

Then find the general solution of this equation.

(c) Solve the equation in (b) when y(0) = 2, y′(0) = 2. 3%

4 (a) Find the Taylor Series, up to and including quadratic terms, 10%

of z = f(x, y) =
ey+xy

x + 1
about the point (0, 0).

(b) Find the least squares line approximation to the points: 7%+2%
(−1, 0), (0, 1), (1, 1), (2, 3), and (3, 5).
Sketch the points and the least squares line on the one graph.

5 (a) Evaluate the matrix product AAT , where 2%

A =

[
1 7 −1 −4

2 −3 −1 0

]
.

(b) Find all solutions of each system of linear equations: 4%+4%

(i)
x + 3y + 2z = 5

4x + 9y + 2z = −7

−x + y + 4z = 19

; (ii)
x + 3y + 2z = 5

4x + 9y + 2z = −7

(c) Find the inverse of the matrix 9%



1 4 1

−2 −7 1

−3 −9 4
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