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1 (a) A particle, shot with an initial velocity of 1000 m/s, is slowed due to
air resistance that results in a negative acceleration of−3000e−2t m/s2.
How long will it take until the particle stops? How far does the particle
move before it stops? 4%

(b) Find the volume of the solid obtained by rotating the plane region
bounded by the curve y = sin x and the x-axis for 0 ≤ x ≤ π, about
the x-axis. 4%

(c) Obtain an iterative reduction formula for In =

∫ e

1

(ln x)n dx. (Hint:

integrate by parts.) Evaluate I0. Then, using the reduction formula
obtained, evaluate I1, I2, and I3. 4%

(d) Find all first and second partial derivatives of f(x, y) = y sin(xy). 4%

(e) Write down the iterative scheme of the Improved Euler method applied
to the initial value problem y′ = cos(x + y), y(0) = 0 with step size
h = 0.1. Evaluate the approximations of y(0.1) and y(0.2) obtained
using this scheme. 4%

(f) Solve the initial value problem
dy

dx
=

2x + cos x

3y2
, with y(0) = 1. 4%

(g) Evaluate the determinant

∣∣∣∣∣∣∣

3 1 −1

3 0 4

6 −2 5

∣∣∣∣∣∣∣
. 4%

(h) Prove that there exist 2× 2 non-zero matrices A and B such that

AB =
[

0 0

0 0

]

(give an example). 4%

2 (a) A solid of revolution is obtained by rotating about the y-axis the area
bounded between y = 1

x+1
and y = 1

x+2
for 0 ≤ x ≤ 1. Find the

volume of the solid obtained. (Hint: use cylindrical shells.) 6%

(b) Find the arc-length along the curve y =
(
4−x2/3

)3/2 for 1 ≤ x ≤ 8.
6%

(c) Find the mass and the centre of mass of a rod with mass density
ρ(x) = ln x for 1 ≤ x ≤ e. 7%
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3 (a) Find general solutions of the given differential equations: 4%+4%
(i) y′′ − 7y′ + 12y = 0, (ii) y′′ − 4y′ + 5y = 0.

(b) Find a particular solution to the given differential equation: 5%+3%
y′′ − 7y′ + 12y = 170 sin x.

Then find the general solution of this equation.

(c) Solve the equation in (b) when y(0) = 2, y′(0) = 1. 3%

4 (a) Find the Taylor Series, up to and including quadratic terms, 10%
of z = f(x, y) = (x2 + y) ln(xy) about the point (1, 1).

(b) Find the least squares line approximation to the points: 7%+2%
(0, 2), (1, 0), (2, 3), (3, 3), (4, 5), and (5, 6).
Sketch the points and the least squares line on the one graph.

5 (a) Find all solutions of each system of linear equations: 4%+4%+2%

(i)
3x + 2y + 5z = 33

6x + 5y + z = 55

−3x− 6y + 30z = 9

; (ii)
3x + 2y + 5z = 33

6x + 5y + z = 55
;

(iii) 3x + 2y + 5z = 33 .

(b) Find the inverse of the matrix 9%



2 −1 4

4 −3 1

−8 7 4


 .
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