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You must obey the examination rules of the University. Any breaches of these rules (and

in particular any attempt at cheating) will result in disciplinary proceedings. For a first

offence this can result in a year’s suspension from the University.



MA4002 Engineering Mathematics 2 Dr. N. Kopteva Spring 2008 Marks

1 (a) An object has accelerationa = sin(0.1t) metres/second2 at time t.

The initial velocity at timet = 0 is v = 50 metres/second. How far

does it travel in the first40 seconds? 4%

(b) Find the volume of the solid obtained by rotating the plane region

bounded by the curvey =
1√

x2 − 1
and thex-axis for 2 ≤ x ≤ 4,

about thex-axis. 4%

(c) Prove thatIn =

∫ π/2

0

sinn x dx satisfies the iterative reduction formula

In =
n− 1

n
In−2 for n ≥ 2. (Hint: integrate by parts withu = sinn−1 x

anddv = sin x dx.) EvaluateI1. Then, using the reduction formula

obtained, evaluateI3 andI5. 4%

(d) Find all first and second partial derivativesof f(x, y) = x e−xy. 4%

(e) Write down the iterative scheme of theImproved Euler methodapplied

to the initial value problemy′ = x − y2, y(0) = 2 with step size

h = 0.1. Evaluate the approximations ofy(0.1), y(0.2) andy(0.3)

obtained using this scheme. 4%

(f) Solve the differential equation
dy

dx
+

2

x
y = 4x (for x > 1) with the

initial condition y(1) = 2. 4%

(g) Evaluate the determinant

∣∣∣∣∣∣∣

1 6 3

−4 5 0

2 −3 −1

∣∣∣∣∣∣∣
. 4%

(h) Prove that
∫

dx

x
= ln |x| + C (for x 6= 0) from the definition of the

indefinite integral. (Consider the cases ofx > 0 andx < 0.) 4%

2 (a) A solid of revolution is obtained by rotating about they-axis the area

bounded betweeny =
1

(x + 1)(x + 2)
and thex-axis for0 ≤ x ≤ 1.

Find the volume of the solid obtained. (Hint: use cylindrical shells.) 6%

(b) Find the arc-length along the curvey = x2 − ln x

8
for 1 ≤ x ≤ 4. 6%

(c) Find the mass and the centre of mass of a rod with mass density

ρ(x) = x e−x for 0 ≤ x ≤ 1. 7%
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3 (a) Find general solutions of the given differential equations: 4%+4%

(i) y′′ − 4y′ + 3y = 0, (ii) y′′ − 4y′ + 4y = 0.

(b) Find a particular solution to the given differential equation: 5%+3%

y′′ − 4y′ + 3y = 10 cos x.

Then find the general solution of this equation.

(c) Solve the equation in (b) wheny(0) = 5, y′(0) = −2. 3%

4 (a) Find the Taylor Series, up to and including quadratic terms, 9%

of z = f(x, y) =
xy

x + y
about the point(−1, 2).

(b) The least squares line approximation to the points 8%+2%

(0, 14), (1, A), (2, B), (3, 2) and (4, 0) is y = 12− 3x.

(i) Find A andB.

(ii) Sketch the points and the least squares line on the one graph.

5 (a) Find all solutions of each system of linear equations: 4%+3%+3%

(i)

2x + y − 5z = −16

−4x + 7y − 8z = 14

8x− y + 8z = 18

; (ii)
2x + y − 5z = −16

−4x + 7y − 8z = 14
;

(iii)
2x + y − 5z = −16

−4x− 2y + 10z = 32
.

(b) Find the inverse of the matrix 9%



3 2 7

−3 4 0

6 −8 7


 .
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