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1. (a) An object has acceleration a(t) = 2(t + 1)−1/3 m s−2 at time t. The initial

velocity at time t = 0 is v = 1 metres/second. How far does it travel in the

first 7 seconds? 3%

(b) Consider the plane region bounded by the curve y = x3 and the line y = 1

for 0 ≤ x ≤ 1. Sketch this region. Find the volume of each of the two solids

obtained by rotating this plane region (i) about the x-axis; (ii) about the

y-axis. 4%

(c) Obtain an iterative reduction formula for In =

∫ 3

0

ex/3 xn dx. Evaluate I0.

Then, using the reduction formula obtained, evaluate I1 and I2. 5%

(d) Find all first and second partial derivatives of f(x, y) = exy−2. 5%

(e) Find the linearization of f(x, y) = exy−2 about the point (2, 1).

(You may use the results of part (d).) 4%

(f) Solve the differential equation
dy

dx
+

3

x
y =

2

x2
(for x > 1), subject to the

initial condition y(1) = 5 . 4%

(g) Evaluate the determinants

∣∣∣∣∣∣∣
3 1 −5

2 0 −6

7 1 0

∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣∣
3 1 0 −5

5 1 2 8

2 0 0 −6

7 1 0 0

∣∣∣∣∣∣∣∣∣ . 5%

(h) Prove that there exist 3 × 3 non-zero matrices A and B such that

AB =

 0 0 0

0 0 0

0 0 0

 (give an example). 4%
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2. (a) A solid of revolution is obtained by rotating about the y-axis the area

bounded between y =
x+ 1

(x+ 2)(x+ 3)(x+ 4)
and the x-axis for

0 ≤ x ≤ 2. Find the volume of the solid obtained. 6%

(b) Find the arc length of the curve y = (2x+ 2)3/2 for 0 ≤ x ≤ 4. 6%

(c) Find the mass and the centre of mass of a rod with mass density

ρ(x) = x sinx for 0 ≤ x ≤ π. 6%
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3. (a) Find general solutions of the given differential equations: 2%+2%

(i) y′′ − 4y′ + 3y = 0, (ii) y′′ − 4y′ + 5y = 0.

(b) Find a particular solution for each of the given differential equations: 6%+6%+2%

(i) y′′ − 4y′ + 3y = 2ex + 5 sinx,

(ii) y′′ − 4y′ + 5y = 2ex + 5 sinx.

Then find the general solutions of these equations.

(You may use the results of part (a).)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. (a) Find the Taylor Series, up to and including quadratic terms, 9%

of z = f(x, y) =
1

x+ y2
about the point (0, 1).

(b) It is known that the quantities z > 0 and t > 0 are related by the formula

z = αtβ, with some unknown constants α > 0 and β. By writing this as

ln z = β ln t+ lnα, one can use the method of least squares to find the best-

fit line relating ln z to ln t and hence find an approximation of the constants

α and β. For the given data points

(t, z) = (1, 4), (2, 6), (3, 7), (4, 8), (5, 8.5),

use this method to find an approximation of the constants α and β. 9%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. (a) Find all solutions of each system of linear equations: 4%+4%

(i)

x − 2y + 3z = 2

3x− 5y + 8z = −3

−2x+ 5y − 7z = −6

x − 3y + z = −4

; (ii)

x − 2y + 3z = 2

3x− 5y + 8z = −3

−2x+ 5y − 7z = −13

x − 3y + z = −4

(b) Find the inverse of the matrix 10%
2 −1 3 0

4 −1 7 1

−2 6 3 2

2 1 8 −6

 .
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