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1 (a) An object has acceleration a(t) =
6

(t+ 1)4
metres/second2 at time t.

The initial velocity at time t = 0 is v = 1 metres/second. How far
does it travel in the first 9 seconds? 4%

(b) Consider the plane region bounded by the curves y = cosx and the x-
axis for 0 ≤ x ≤ 1. Find the volume of each of the two solids obtained
by rotating this plane region (i) about the x-axis; (ii) about the y-axis. 5%

(c) Obtain an iterative reduction formula for In =
∫ e

1

x2(lnx)ndx, where

n ≥ 0 (Hint: integrate by parts.) Evaluate I0. Then, using the reduc-
tion formula obtained, evaluate I1 and I2. 4%

(d) Find all first and second partial derivatives of f(x, y) = ln(x2 − y). 4%

(e) Find the linearization of the function f(x, y) = ln(x2 − y) about the
point (1, 0). (You may use the results of part (d).) 2%

(f) Solve the differential equation x
dy

dx
− 3y = x5 cos(x2 + 1) (for

x > 1), subject to the initial condition y (1) = 2 . 5%

(g) Evaluate the three determinants∣∣∣∣∣∣∣
2 1 4

1 1 −5

2 −1 1

∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣
2 −3 4

1 3 −5

2 −2 1

∣∣∣∣∣∣∣ , and

∣∣∣∣∣∣∣∣∣
2 −3 1 4

0 1 2 0

1 3 1 −5

2 −2 −1 1

∣∣∣∣∣∣∣∣∣ . 6%

(h) Evaluate the determinant

∣∣∣∣∣∣∣∣∣
a1 a2 a3 a4

b1 0 0 0

c1 0 0 c4

d1 0 d3 d4

∣∣∣∣∣∣∣∣∣ . 4%
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2 (a) A solid of revolution is obtained by rotating about the y-axis the area

bounded between y =
1

x2 + 2x+ 2
and the x-axis for 0 ≤ x ≤ 2.

Find the volume of the solid obtained. 6%

(b) Find the arc-length of the curve y = (1− x2)1/2 for 0 ≤ x ≤ 1

2
. 6%

(c) Find the mass and the centre of mass of a rod with mass density
ρ(x) = ln x for 1 ≤ x ≤ 2. (NOTE that the left endpoint is at x = 1.) 6%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3 (a) Find general solutions of the given differential equations: 2%+2%
(i) y′′ − 2y′ + y = 0, (ii) y′′ − 3y′ = 0.

(b) Find a particular solution for each of the given differential equations: 6%+6%+2%
(i) y′′ − 2y′ + y = 2ex + 6,
(ii) y′′ − 3y′ = 2ex + 6.
Then find the general solutions of these equations.
(You may use the results of part (a).)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 (a) Find the Taylor Series, up to and including quadratic terms, 9%

of z = f(x, y) = x cos(x− y2) about the point (0, 0).

(b) It is known that the quantities z > 0 and t > 0 are related by the for-
mula z = αtβ , with some unknown constants α > 0 and β. By writing

this as ln z = β ln t+ lnα, one can use the method of least squares to
find the best-fit line relating ln z to ln t and hence find an approxima-
tion of the constants α and β. For the given data points

(t, z) = (1, 2), (2, 2), (3, 4), (4, 3), (5, 6), (6, 7),

use this method to find an approximation of the constants α and β. 9%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 (a) Find all solutions of each system of linear equations: 4%+4%

(i)
x + 2y − 2z = 1

2x+ 5y − 5z = 3

4x− y + z = −9

; (ii)
x + 2y − 2z = 1

2x+ 5y − 5z = 3

4x− y + z = −5

(b) Find the inverse of the matrix 10%
1 −1 −1 0

2 −3 −2 −4

−2 3 1 −1

4 −1 −5 8

 .
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