MA4002 Final Exam Answers, Spring 2022

1.(a) An object has acceleration $a(t) = \frac{2}{(t+1)^{3/5}}$ metres/second² at time t. The initial velocity at time t = 0 is v = 2 metres/second. How far does it travel in the first 6 seconds?

Velocity:
$$v(t) = 2 + \int_0^t 2(s+1)^{-3/5} ds = -3 + 5(t+1)^{2/5}$$
.

Distance
$$s = \int_0^6 v(t) \, dt = \left(-3s + \frac{25}{7}(s+1)^{7/5} \right) \Big|_0^6 \text{m so } s = -\frac{151}{7} + 25 \cdot 7^{2/5} = \boxed{32.876 \, \text{m}}.$$

(b) Consider the plane region bounded by the curves $y = 3x - 2x^2$ and $y = x^3$ for $x \ge 0$. Find the volume of each of the <u>two solids</u> obtained by rotating this plane region (i) about the x-axis; (ii) about the y-axis.

To find the intercepts, solve $3x - 2x^2 = x^3$ for $x \ge 0$, which is equivalent to $x(x^2 + 2x - 3) = 0$, with roots 0 and 1, (while the negative root -3 is dropped).

(i) The cross-sectional area: $\pi[(3x - 2x^2)^2 - (x^3)^2]$.

$$V = \pi \int_0^1 \left[9x^2 - 12x^3 + 4x^4 - x^6 \right] dx = \pi \left(3x^3 - 3x^4 + \frac{4}{5}x^5 - \frac{1}{7}x^7 \right) \Big|_0^1 = \frac{23}{35}\pi \approx 2.064475172.$$

- (ii) Using cylindrical shells: $V = \int_0^1 2\pi x \left[(3x 2x^2) x^3 \right] dx = \int_0^1 \pi [6x^2 4x^3 2x^4] dx = \pi \left(2x^3 x^4 \frac{2}{5}x^5 \right) \Big|_0^1 = \frac{3}{5}\pi \approx 1.884955592.$
- (c) Obtain an iterative reduction formula for $I_n = \int_0^1 x^n e^{-x/3} dx$. Evaluate I_0 . Then, using the reduction formula obtained, evaluate I_1 and I_2 .

Integrating by parts using $u = x^n$ and $dv = e^{-x/3}dx$ yields the reduction formula

$$I_n = x^n \left(-3e^{-x/3} \right) \Big|_0^1 - \int_0^1 (-3e^{-x/3})(nx^{n-1}) dx = \boxed{-3e^{-1/3} + 3nI_{n-1}} \text{ for } n \ge 1.$$

Next, $I_0 = 3 - 3e^{-1/3} \approx 0.8504060683$

implies
$$I_1 = -3e^{-1/3} + 3 \cdot 1 \cdot I_0 = 9 - 12e^{-1/3} \approx 0.401624273$$
,

and
$$I_2 = -3e^{-1/3} + 3 \cdot 2 \cdot I_1 = 54 - 75e^{-1/3} \approx 0.26015170$$
.

(d) Find all first and second partial derivatives of $f(x, y) = \sin(x^2 - y^3)$.

$$f_x = 2x\cos(x^2 - y^3), \quad f_y = -3y^2\cos(x^2 - y^3), \quad f_{xx} = 2\cos(x^2 - y^3) - 4x^2\sin(x^2 - y^3),$$

$$f_{yy} = -6y\cos(x^2 - y^3) - 9y^4\sin(x^2 - y^3), \quad f_{xy} = 6xy^2\sin(x^2 - y^3).$$

(e) Find the linearization of the function $f(x,y) = \sin(x^2 - y^3)$ about the point (2,1). (You may use the results of part (d).)

$$f(2,1) = \sin(2^2 - 1^3) = \sin 3 \approx 0.1411200081,$$
 $f_x(2,1) = 2 \cdot 2\cos 3 \approx -3.959969986,$ $f_y(2,1) = -3 \cdot 1^2\cos 3 \approx 2.969977490.$

Answer: $f(2+h, 1+k) \approx 0.1411200081 - 3.959969986 h + 2.969977490 k$.

(f) Solve the differential equation $x\frac{dy}{dx} + 5y = \frac{4\sin(2x)}{x^3}$ (for x > 1), subject to the initial condition $y\left(\frac{\pi}{4}\right) = 2$.

To solve $y' + \frac{5}{x}y = \frac{4\sin(2x)}{x^4}$, find the integrating factor: $v = \exp\{\int \frac{5}{x} dx\} = x^5$.

So $(x^5 \cdot y)' = 4x \sin(2x)$. Therefore (using integration by parts), $x^5 \cdot y = \sin(2x) - 2x \cos(2x) + C$ so

$$y = x^{-5}\sin(2x) - 2x^{-4}\cos(2x) + Cx^{-5}$$
. The initial condition yields:
$$2 = \frac{\sin(\pi/2) - 2(\pi/4)\cos(\pi/2) + C}{(\pi/4)^5}$$
 so
$$2(\pi/4)^5 = 1 + C$$
, so
$$C = \frac{\pi^5}{512} - 1 \approx -0.4023$$
 and
$$y = x^{-5}\sin(2x) - 2x^{-4}\cos(2x) + \left(\frac{\pi^5}{512} - 1\right)x^{-5}$$
.

(g) Evaluate the three determinants

$$\begin{vmatrix} 2 & 3 & 0 & | & | & 3 & 0 & 1 & | & 2 & 3 & 0 & 1 \\ 1 & 4 & -2 & | & 4 & -2 & 4 & | & and & 2 & 3 & 0 & 1 \\ -1 & 5 & -3 & | & 5 & -3 & 2 & | & -1 & 5 & -3 & 2 \end{vmatrix}$$

Answers: $\boxed{11}$ and $\boxed{22}$, and then, using the first row expansion, $1 \cdot 22 - 2 \cdot 11 = \boxed{0}$.

(h) Prove that $\int \frac{dx}{x} = \ln|x| + C$ (for $x \neq 0$) from the definition of the indefinite integral. (Hint: consider the cases of x > 0 and x < 0.)

For x > 0 we have $\frac{d}{dx} \ln |x| = \frac{d}{dx} \ln x = \frac{1}{x}$, while for x < 0 we have $\frac{d}{dx} \ln |x| = \frac{d}{dx} \ln (-x) = \frac{1}{-x} (-x)' = \frac{1}{x}$, where we used the chain rule. Therefore $\frac{d}{dx} \ln |x| = \frac{1}{x}$ for all $x \neq 0$. The desired result follows.

2.(a) A solid of revolution is obtained by rotating about the y-axis the area bounded between y =

$$\frac{1}{(x+1)(x+2)^2}$$
 and the x-axis for $0 \le x \le 3$. Find the volume of the solid obtained.

Cylindrical shell area:
$$2\pi x \left[\frac{1}{(x+1)(x+2)^2}\right] = 2\pi \left[\frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}\right] = 2\pi \left[\frac{(-1)}{x+1} + \frac{1}{x+2} + \frac{2}{(x+2)^2}\right]$$

where we used the partial fraction representation,

for which a calculation shows: A = -1, B = 1, C = 2.

$$V = 2\pi \int_0^3 \frac{x}{(x+1)(x+2)^2} dx = 2\pi \int_0^3 \left[\frac{(-1)}{x+1} + \frac{1}{x+2} + \frac{2}{(x+2)^2} \right] dx$$
$$= 2\pi \left(-\ln|x+1| + \ln|x+2| - 2(x+2)^{-1} \right) \Big|_0^3 = 2\pi \left(\ln 5 - 3\ln 2 + \frac{3}{5} \right) \approx 0.8167912820.$$

(b) Find the arc-length of the curve $y = x^{3/2}$ for $0 \le x \le 1$.

$$y'(x) = \frac{3}{2}x^{1/2}. \qquad \sqrt{1+y'^2} = \frac{1}{2}\sqrt{9x+4}.$$
 Arc-length:
$$s = \int_0^1 \frac{1}{2}\sqrt{9x+4}\,dx = \left.\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{1}{9}(9x+4)^{3/2}\right|_0^1 = \left.\frac{1}{27}[(9\cdot 1+4)^{3/2}-4^{3/2}] = \frac{1}{27}[(13)^{3/2}-8] \approx 1.439709874.$$

(c) Find the mass and the centre of mass of a rod with mass density $\rho(x) = \ln(x+1)$ for $0 \le x \le 4$.

$$\rho = \ln(x+1); \ x\rho = x \ln(x+1).$$

Mass (using t = x + 1, integrate by parts with $u = \ln t$):

$$m = \int_0^4 \rho \, dx = \int_1^5 \ln t \, dt = \left[t \ln t - t \right]_1^5 = 5 \ln 5 - 4 \approx 4.047189560.$$

Moment (integrate by parts twice):

$$M = \int_0^4 x \rho \, dx = \int_1^5 (t - 1) \ln t \, dt = \int_1^5 t \ln t \, dt - m = \left(\frac{1}{2}t^2 \ln t - \frac{1}{4}t^2\right) \Big|_1^5 - m = \frac{1}{2}25 \ln 5 - \frac{1}{4} \cdot 24 - (5 \ln 5 - 4) = \frac{15}{2} \ln 5 - 2 \approx 10.07078434$$

Center of mass:
$$\bar{x} = M/m = \frac{\frac{15}{2} \ln 5 - 2}{5 \ln 5 - 4} \approx 2.488340166$$

3.(a) Find general solutions of the given differential equations:

(i)
$$y'' - 8y' - 9y = 0$$
, (ii) $y'' - 2y' + 26y = 0$

(i) Roots: 9 and
$$-1$$
 so $y = C_1 e^{9x} + C_2 e^{-x}$.

(ii) Roots:
$$1 + 5i$$
, $1 - 5i$ so $y = e^x[C_1 \cos(5x) + C_2 \sin(5x)]$.

(b) Find a particular solution for each of the given differential equations:

(i)
$$y'' - 8y' - 9y = 2e^{-x} - 9x$$
, (ii) $y'' - 2y' + 26y = 2e^{-x} - 9x$.

Then find the general solutions of these equations.

(i) Look for a particular solution in the form $y_p = Axe^{-x} + (Bx + C)$, which yields

$$-10Ae^{-x} - 9Bx - (8B + 9C) = 2e^{-x} - 9x$$
 so $y_p = -\frac{1}{5}xe^{-x} + x - \frac{8}{9}$.

General solution:
$$y = -\frac{1}{5}xe^{-x} + x - \frac{8}{9} + C_1e^{9x} + C_2e^{-x}$$
.

(ii) Look for a particular solution $y_p = A e^{-x} + (B x + C)$, which yields

$$29Ae^{-x} + 26Bx + (26C - 2B) = 2e^{-x} - 9x$$
 so $y_p = -\frac{2}{29}e^{-x} - \frac{9}{26}x - \frac{9}{338}$.

General solution: $y = -\frac{2}{29}e^{-x} - \frac{9}{26}x - \frac{9}{338} + e^x[C_1\cos(5x) + C_2\sin(5x)].$

4.(a) Find the Taylor Series, up to and including quadratic terms, of $z = f(x,y) = \ln(xy^3 - 1)$ about the point (3,1).

Answer: $f(3+h,1+k) \approx \ln 2 + \frac{1}{2}h + \frac{9}{2}k - \frac{1}{8}h^2 - \frac{3}{4}hk - \frac{45}{8}k^2$.

$$f_x = \frac{y^3}{xy^3 - 1}, \quad f_y = \frac{3xy^2}{xy^3 - 1}, \quad f_{xx} = \frac{-y^6}{(xy^3 - 1)^2}, \quad f_{xy} = \frac{3y^2(xy^3 - 1) - 3xy^2(y^3)}{(xy^3 - 1)^2} = \frac{-3y^2}{(xy^3 - 1)^2},$$

$$f_{yy} = \frac{6xy(xy^3 - 1) - 3xy^2(3xy^2)}{(xy^3 - 1)^2} = \frac{-3x^2y^4 - 6xy}{(xy^3 - 1)^2}.$$

Using $3 \cdot 1^3 - 1 = 2$, one gets $f(3, 1) = \ln 2$,

$$f_x(3,1) = \frac{1}{2}$$
, $f_y(3,1) = \frac{9}{2}$, $f_{xx}(3,1) = -\frac{1}{4}$, $f_{xy}(3,1) = -\frac{3}{4}$, $f_{yy}(3,1) = -\frac{45}{4}$.

(b) It is known that the quantities z > 0 and t > 0 are related by the formula $z^{\alpha} = 2t^{\beta}$, with some unknown constants $\alpha \neq 0$ and β . By writing this as $\alpha \ln z = \beta \ln t + \ln 2$, and then as $\ln z = \frac{\beta}{\alpha} \ln t + \frac{\ln 2}{\alpha},$

one can use the method of least squares to find the best-fit line relating $\ln z$ to $\ln t$ and hence find an approximation of the constants α and β . For the given data points

$$(t, z) = (1, 9), (3, 2), (5, 7), (7, 5), (9, 3),$$

use this method to find an approximation of the constants α and β .

n = 5, $(\ln t, \ln z) \approx (0, 2.197224578)$, (1.098612289, 0.6931471806), (1.609437912, 1.945910149),

$$(1.945910149, 1.609437912), (2.197224578, 1.098612289).$$
 $\sum_{k=1}^{5} \ln t_k \approx 6.851184928,$

$$\sum_{k=1}^{5} (\ln t_k)^2 \approx 12.41160151, \quad \sum_{k=1}^{5} \ln z_k \approx 7.544332109, \quad \sum_{k=1}^{5} \ln t_k \cdot \ln z_k \approx 9.439041068.$$

$$a \approx \frac{n \cdot (9.439041068) - (6.851184928) \cdot (7.544332109)}{n \cdot (12.41160151) - (6.851184928)^2} \approx \boxed{-0.2971312979},$$

$$b \approx \frac{(7.544332109) - a \cdot (6.851184928)}{n} \approx 1.916006716, \quad \text{so } \alpha = \frac{\ln 2}{b} \approx \frac{\ln 2}{1.916006716} \approx \boxed{0.3617665715}$$

$$a \approx \frac{n \cdot (9.439041068) - (6.851184928) \cdot (7.544332109)}{n \cdot (12.41160151) - (6.851184928)^2} \approx \boxed{-0.2971312979}$$

$$b \approx \frac{(7.544332109) - a \cdot (6.851184928)}{n} \approx 1.916006716, \qquad \text{so } \alpha = \frac{\ln 2}{b} \approx \frac{\ln 2}{1.916006716} \approx \boxed{0.3617665715}$$

and $\beta = a \cdot \alpha \approx -0.2971312979 \cdot 0.3617665715 \approx -0.1074921709$

5 NOTE: For detailed evaluations, see the **Maple solutions** attached.

(a) Find all solutions of each system of linear equations:

(i) This system can be reduced to
$$\begin{bmatrix} 2 & 0 & 0 & | & -7 \\ 0 & 1 & 0 & | & 6 \\ 0 & 0 & 1 & | & 8 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
 so $x = -\frac{7}{2}, \ y = 6, \ z = 8$.

(ii) This system can be reduced to
$$\begin{bmatrix} 2 & 0 & 1 & 2 \\ 0 & 1 & -1 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ so } \underbrace{x = 1 - \frac{1}{2}t, \ y = -4 + t, \ z = t}.$$

(b) Find the inverse of a matrix.

$$\begin{bmatrix} 4 & 3 & 3 & 17 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 and then $A^{-1} = \begin{bmatrix} 127 & 117 & 28 & 6 \\ -80 & -75 & -18 & -4 \\ 41 & 38 & 9 & 2 \\ -23 & -21 & -5 & -1 \end{bmatrix}$.