
MA4002 Final Exam Answers, Spring 2025

1.(a) An object has acceleration a(t) =
3√
t+ 1

metres/second2 at time t. The initial velocity at

time t = 0 is v = 1 metres/second. How far does it travel in the first 8 seconds?

Velocity: v(t) = 1 +
∫ t

0
3√
s+1

ds = 1 + 6
√
s+ 1

∣∣t
0
= −5 + 6

√
t+ 1.

Distance s =
∫ 8

0
v(t) dt =

(
−5t+ 4(t+ 1)3/2

)∣∣8
0
= −40 + 4(93/2 − 1) = 64m so s = 64m .

(b) Consider the plane region bounded by the curve y =
√
x2 + 4 and the x-axis for 0 ≤ x ≤ 2.

Find the volume of each of the two solids obtained by rotating this plane region (i) about the x-axis;

(ii) about the y-axis.

(i) The cross-sectional area: π[(
√
x2 + 4)2] = π(x2 + 4).

V = π
∫ 2

0
(x2 + 4) dx = π

(
1
3
x3 + 4x

)∣∣2
0
= 32

3
π ≈ 33.51032165.

(ii) Using cylindrical shells and then u = x2 + 4:

V =
∫ 2

0
2πx [

√
x2 + 4] dx = π

∫ 8

u=4
u1/2 du = π 2

3
u3/2

∣∣8
u=4

= π 2
3
(83/2−8) = π 16

3
(
√
8− 1) ≈ 30.63559054 .

(c) Obtain an iterative reduction formula for In=
∫ e

1

x−2(lnx)ndx, where n ≥ 0 (Hint: integrate by

parts.) Evaluate I0. Then, using the reduction formula obtained, evaluate I1 and I2.

Integrating by parts using u = (lnx)n and dv = x−2dx yields du = n(lnx)n−1/x and v = −x−1,

and the reduction formula for n ≥ 1:

In = (lnx)n · (−x−1)
∣∣e
1
−

∫ e

1
(−x−1) · n(lnx)n−1/x dx = −e−1 + nIn−1 for n ≥ 1.

Next, I0 =
∫ e

1
x−2dx = −[e−1 − 1−1] = 1− e−1 ≈ 0.6321205588 implies

I1 = −e−1 + 1 · I0 = −e−1 + 1 · [1− e−1] = 1− 2e−1 ≈ 0.2642411176, and

I2 = −e−1 + 2I1 = −e−1 + 2 ·
[
1− 2e−1

]
= 2− 5e−1 ≈ 0.160602794.

(d) Find all first and second partial derivatives of f(x, y) =
√

x− y2.

fx = 1

2
√

x−y2
, fy = −y√

x−y2
, fxx = −1

4(x−y2)3/2
, fxy = y

2(x−y2)3/2
, fyy = −1·

√
x−y2−y·fy
x−y2

=

− (x−y2)+y2

(x−y2)3/2
= −x

(x−y2)3/2
.

(e) Find the linearization of the function f(x, y) =
√

x− y2 about the point (2, 1). (You may use

the results of part (d).)



f(2, 1) = 1, fx(2, 1) =
1
2
, fy(2, 1) = −1.

Answer: f(2 + h, 1 + k) = 1 + 1
2
· h+ (−1) · k = 1 + 1

2
h− k.

(f) Solve the differential equation x
dy

dx
+ 2y = 3x lnx (for x > 1), with the initial condition

y (1) =
2

3
.

To solve y′ + 2
x
y = 3 ln x, find the integrating factor: v = exp{

∫
2
x
dx} = x2.

So (x2 · y)′ = 3x2 lnx. Therefore x2 ·y =
∫
3x2 lnx dx = x3 lnx−

∫
x3x−1dx = x3 lnx− 1

3
x3+C

(where we used an integration by parts with u = lnx and v dv = 3x2 dx, so du = x−1dx and

v = x3), so y = x lnx− 1
3
x+ Cx−2 . The initial condition yields: 2

3
= 0 − 1

3
+ C so C = 1, so

y = x lnx− 1
3
x+ x−2 .

(g) Evaluate the three determinants∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 1

−1 1 −5

2 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣∣∣∣∣

1 3 −1

−1 2 1

2 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣
, and

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 −1 1

−1 2 1 −5

0 3 0 −2

2 −1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Answers: 12 and 15 ,

and then, using the third row expansion, 0− (3) · [12] + 0− (−2) · [15] + 0 = −6 .

(h) Evaluate the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 a4

b1 0 0 0

c1 c2 0 0

d1 0 d3 d4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Use, e.g., the second row expansion; for the resulting 3× 3 determinant, use the second row expan-

sion:

det = −b1

∣∣∣∣∣∣∣∣∣∣∣
a2 a3 a4

c2 0 0

0 d3 d4

∣∣∣∣∣∣∣∣∣∣∣
= (−b1) · (−c2)

∣∣∣∣∣∣∣
a3 a4

d3 d4

∣∣∣∣∣∣∣ = b1 c2 (a3 d4 − a4 d3) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



2.(a) A solid of revolution is obtained by rotating about the x-axis the area bounded between y =

1√
x2 + 3x+ 2

and the x-axis for 0 ≤ x ≤ 1. Find the volume of the solid obtained.

Cross-sectional area: π
[

1√
x2+3x+2

]2
= π 1

x2+3x+2
. So, using x2 + 3x+ 2 = (x+ 1)(x+ 2),

V = π
∫ 1

0

(
1

x+1
− 1

x+2

)
dx = π(ln |x+ 1| − ln |x+ 2|)

∣∣1
0
= π([ln 2− ln 1]− [ln 3− ln 2])

= π(2 ln 2− ln 3) ≈ 0.9037798841 .

(b) Find the arc-length of the curve y =
x3

6
+

1

2x
for 1 ≤ x ≤ 2 .

y′(x) = 1
2
x2 − 1

2
x−2 and y′2 =

(
1
2
x2 − 1

2
x−2

)2
= 1

4
x4 − 1

2
+ 1

4
x−4.

1 + y′2 = 1
4
x4 + 1

2
+ 1

4
x−4 =

(
1
2
x2 + 1

2
x−2

)2, so
√
1 + y′2 = 1

2
x2 + 1

2
x−2.

Arc-length s =
∫ 2

1

(
1
2
x2 + 1

2
x−2

)
dx =

(
1
6
x3 − 1

2
x−1

)∣∣2
1
= 7

6
− 1

2

(
−1

2

)
= 17

12
≈ 1.416666667 .

(c) Find the mass and the centre of mass of a rod with mass density ρ(x) = e−x for 0 ≤ x ≤ 1.

Mass:

m=
∫ 1

0
ρ dx =

∫ 1

0
e−x dx = −e−x

∣∣1
0
= 1− e−1 ≈ 0.6321205588 .

Moment (using integration by parts with u = x and v = −e−x):

M=
∫ 1

0
xρ dx =

∫ 1

0
x e−x dx = x (−e−x)

∣∣1
0
−
∫ 1

0
(−e−x) dx = (−xe−x− e−x)

∣∣1
0
= −(x+1)e−x

∣∣1
0
=

1− 2e−1 ≈ 0.2642411176 .

Center of mass: x̄ = M/m = 1−2e−1

1−e−1 ≈ 0.4180232931 .
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3.(a) Find general solutions of the given differential equations:

(i) y′′ + 2y′ + 5y = 0, (ii) y′′ + 2y′ + y = 0.

(i) Roots: −1 + 2i and −1− 2i so y = e−x(C1 cos(2x) + C2 sin(2x)).

(ii) Roots: −1 and −1 so y = C1e
−x + C2xe

−x.

(b) Find a particular solution for each of the given differential equations:

(i) y′′ + 2y′ + 5y = 4e−x + 5,

(ii) y′′ + 2y′ + y = 4e−x + 5.

Then find the general solutions of these equations.

(You may use the results of part (a).)

(i) Look for a particular solution in the form yp = Ae−x +B, which yields

4Ae−x + 5B = 4e−x + 5 so yp = e−x + 1.

General solution: y = e−x + 1 + e−x(C1 cos(2x) + C2 sin(2x)).

(ii) Look for a particular solution yp = Ax2 e−x +B, which yields

2Ae−x +B = 4e−x + 5 so yp = 2x2 e−x + 5.

General solution: y = 2x2 e−x + 5 + C1e
−x + C2xe

−x.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



4.(a) Find the Taylor Series, up to and including quadratic terms, of z = f(x, y) = (x + 1) exy

about the point (0, 0).

Answer: f(h, k) ≈ 1 + h+ hk .

fx = 1 · exy + y (x+ 1) exy, fy = x(x+ 1) exy = (x2 + x) exy,

fxx = y exy + y fx = (2y + y2(x+ 1))exy,

fxy = [(x2 + x) exy]x = (2x+ 1) exy + (x2 + x)y exy,

fyy = x2(x+ 1) exy.

So, f(0, 0) = 1, fx(0, 0) = 1, fy(0, 0) = 0, fxx(0, 0) = 0, fxy(0, 0) = 1, fyy(0, 0) = 0.

f(h, k) ≈ 1 + 1 · h+ 0 · k + 1
2
(0 · h2 + 2 · 1 · hk + 0 · k2).

(b) It is known that the quantities z > 0 and t > 0 are related by the formula z = αtβ , with some

unknown constants α > 0 and β. By writing this as ln z = β ln t + lnα, one can use the method

of least squares to find the best-fit line relating ln z to ln t and hence find an approximation of the

constants α and β. For the given data points

(t, z) = (1, 5), (3, 3), (5, 2), (7, 1), (9, 1),

use this method to find an approximation of the constants α and β.

n = 5, (ln t, ln z) ≈

(0, 1.609437912), (1.098612289, 1.098612289), (1.609437912, 0.6931471806), (1.945910149, 0),

(2.197224578, 0).

5∑
k=1

ln tk ≈ 6.851184928,
5∑

k=1

(ln tk)
2 ≈ 12.41160151,

5∑
k=1

ln zk ≈ 3.401197382,

5∑
k=1

ln tk · ln zk ≈ 2.322526313.

a ≈ n · (2.322526313)− (6.851184928) · (3.401197382)
n · (12.41160151)− (6.851184928)2

≈ −0.7731589321 ,

b ≈ (3.401197382)− a · (6.851184928)
n

≈ 1.739650441,



so α = eb ≈ 5.695352213 and β = a ≈ −0.7731589321 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



5 NOTE: For detailed evaluations, see the Maple solutions attached.

(a) Find all solutions of each system of linear equations:

(i)

x + 2y − 2z + t = 2

2x+ 5y − 5z + t = 6

4x− y + 2z + 9t = −7

x + 2y − 2z + 2t = 0

; (ii)

x + 2y − 2z + t = 2

2x+ 5y − 5z + t = 6

4x− y + 2z + 9t = −7

(i) This system reduces from



1 2 −2 1 2

2 5 −5 1 6

4 −1 2 9 −7

1 2 −2 2 0


to



1 0 0 0 4

0 1 0 0 −5

0 0 1 0 −5

0 0 0 1 −2


so it has a UNIQUE solution x = 4, y = −5, z = −5, t = −2 .

(ii) This system can reduces from


1 2 −2 1 2

2 5 −5 1 6

4 −1 2 9 −7

 to


1 0 0 3 −2

0 1 0 −5 5

0 0 1 −4 3

 so, let-

ting t = s (a free variable), one gets x = −2− 3s, y = 5 + 5s, z = 3 + 4s, t = s where s ∈ R.

(b) Find the inverse of the matrix 

1 2 −1 1

5 8 −2 4

5 6 2 1

1 2 −5 8


.



From



1 2 −1 1 1 0 0 0

5 8 −2 4 0 1 0 0

5 6 2 1 0 0 1 0

1 2 −5 8 0 0 0 1


, using elementary row operations, one gets:



1 0 0 0 62 −27 14 4

0 2 0 0 −75 33 −17 −5

0 0 1 0 −33 14 −7 −2

0 0 0 1 −19 8 −4 −1


,

and then A−1 =



62 −27 14 4

−75
2

33
2

−17
2

−5
2

−33 14 −7 −2

−19 8 −4 −1


.
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