Lecture 17 §17.1 Volumes by Slicing

Recall from §15.1: |V = [? A(x) dx

—for a general solid, where A(x) is the cross-sectional area obtained
by slicing the solid using planes perpendicular to the x-axis.

Final Example: A tent has a circular base of radius R and is supported
by a horizontal bar held at height h. Find the volume of the tent.

% _—— —horizontal bar

-

at height h

\—base of radius R 3
Each cross-section: is a triangle of height h
and base 2v/R? — x2, so the area is A(x) = 3h-2VR2 — x u,z_/-ﬂ
21K

= V=T Ax)dx =[5 Ih 2R —x2dx = Lh nR?]
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§17.2 Arc-Length of a Curve

Assume:

f(x) is smooth on [a, b, i.e. f/(x) exists and continuous on [a, b]

Consider a graph of a smooth f(x)—represented by a smooth curve
4 =7k)

! What is the length of
} : the curve??

RETEl ;
C——
OL)(H X; £ X
Solution: Partition [a, b], as usual, into n subintervals

On each subinterval:

/) our curve is approximately represented
i by the green straight line.

O X

%4 =
Lx fﬂ\’,‘)—fn,/)
i = Asj~ ([OX)2 + (Ay)? . ] .
A4X = X

- Xy

Lecture 17



Lecture 17

Note: by the Mean-Value Theorem, Ay; = f(x;) — f(xi_1) = f'(¢;) - Ax;,
where ¢; € [x;_1, Xj]

= As ~ \/(Axi + (f'(ci) Ax, \/1 (f'(ci) SN

n n
For the total arc-length: s=> Asix ) (/1+ (F'(c))?- Ax;
i—1 i—1

Riemann sum

—here nis the number of subintervals.

Letn — oo :

b b
s:J 1+(f’(x))2dx:J 1+(%)2dx

a a

—this is the arc-length of y = f(x) between x = aand x = b.



Examples:
@ Find the arc-length along y = x/x for 0 < x < 4
& ‘ ad 3\ 7/ 1 dvh 2
G/ E=) =g (@14 ix
ot b s = Joy/ 1 () = Jo 1+ §xax
Substitution u =1+ x, du=Jadx, dx=§du
=4 = u=10.

with limits: x =0

= s= ], z
@ Find the arc-length along y = va2 — x2for0 < x < a.

(Note: it's quarter of a circle!)

a2_x27

—as expected!
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© Length of Corrugated Metal
A sheet of metal is bent into the sinusoidal shape:

N e

e s
20 cm

S

What length of sheet is required to make 5 m length of corrugated
metal?

S: Note that 10cm = {txm, 20cm = {m.
For a 5m long panel, one needs 25 periods of the sheet:

v Y=Sh (/0TX) _ - «

30 }/\ﬁ -~
0J \7% L

~ I B s ., I g

20 e

= L=25- 5 /14 [(2"197)) 1P ax = 25 [§ /1 + [£ cos(107x))? dx

~ 7.32m —can be obtained using numerical integration. O




§17.3 Arc-Length of x = g(y)

d
o s=| \i+(§)d
X =24 ¢ ()" o

T —an analogue of the previous formula

(with x <> y swap).

Note: ds = /1+ (%)% dx = \/m:\/%dy
—s0 the above formula can be formally obtained from the previous one...

Example: Find the arc-length anngX:é'—;+}%for1gy<2
S G=F-F = \1+( cTy ARG R
:>s_j1\/7dy f1y§ Tdy—"':%- O

w

SN—
n
Il
oS
+
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Lecture 18 Arc-Length of Parametric Curves.
Applications in Dynamics §18.1

§18.1 A particle moves in the plane

i

) —at time t its position is (x(t), y(t)).

Alternatively, we can use a vector description:

The velocity vectoris | V(1) = & = 9.

NOTE: this velocity vector has direction tangent to the path,

since V(t) =9 = AIit_m'“%”t—'m: =

7

(#+41) ‘/%M -7 )

Lecture 18 Arc-Length of Parametric Curves. Applications in Dynamics

1/7



§18.2 What distance does the particle travels

—between t = t; and t = t,, given a particle trajectory 7(t)??

4 = Solution:
\ forget about t for a moment
= - and recall the material of Lecture 17:
e ) the arc-length of a curve y(x)

between x = x(#) and x = x(t,) is givenby s= I§E§f§ T+ (%)2 dx.

Now, use a substitution: x = x(f):

= dx =% dt, withlimits: x =x(t;) = t=1, x=x(k) = t=t.

dy

. dy _ dy dx : dy _ dt

Also use: G = G o (by the Chain Rule) = 5 = 7
dt

ay
e 1+(3;) (Ed) =[5t (Z) (%)

dt
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Remark: recall the velocity vector v(t) = & - i+ 5 -/

its magnitude: V(1) = 1/ (%)* + (%)%,

so rewrite our arc-length as | s = f |V(t)| dt —i.e. the distance

traveled is the integral, w.r.t. t of the velocity magnitude.

18.3 Remark on Parametric Curves & the
rc-Length

A parametric curve in the plane is defined by 2 functions

x = x(t) and y = y(t),
or i A
the vector 7(t) = x(t) - i + y(t) -]

X

The difference: parameter t is NOT always time.

But mathematically: same thing, and same arc-length formula

—zdt‘

Lecture 18 Arc-Length of Parametric Curves. Applications in Dynamics
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§18.4 Examples

@ A particle has position 7(t) = a cos(w t) - 1 + asin(w t) - ] at time ¢t
(uniform circular motion):

#1a f-cos(wd, a-sc n(WE))
.'@ ’i e Find the distance traveled
A\ ' betweent=0andt =T

S: V(t)—gg——awsm(wt) T+aw cos(wt) -]

ﬂ

2sin?(wt) + (aw)? cos?(w t) = /(aw)2 = aw
= s:jo}V]dt:joTawdt:awT. O

NOTE: s = a0,
where 0 = w T is the angle traveled betweent =0and t = T.

Note also that w is called the angular speed.
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@ Find the length of the outward spiral 7(t) = e! (cost-i+sint - )
%T forO<t<T.

N

= (el cost— el sint)-i+ (e sint+ e cost)j

=l

S: v(t) =

=N

]\7‘2 = ! (cos®t —2 costsint+ sin® t) +e?t (sin2 t+2sint cost+ cos® t)
=2¢e*
(where we used cos?® t + sin® t = 1).
= |V]=v2¢€

—s=[7|7|dt=[] V2e'dt=v2el|] =v2(e —1). D
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© Acycloid: a circular wheel of radius a rolls along a straight line.
Fix the point at the bottom of the wheel and trace its path.

J Determine the length of the curve
through one full revolution.

X

S:  Whatis 7(1)?

We introduce parameter t = number of radians that the wheal has
rolled through. (NOTE: tis not time here!)

Observe: |[F(t) = R(t) + s(1) |

—After rolling through t radians: R(t) = (at, a)=at- i+ a-J.

—Relative to the centre of the wheal, our fixed point goes along the
circle, so has position: 7;(t) = (—a sint, —a cos t).

~

Hence, 7(t) = R(t) + 75(t) = (at — asint)i + (a— a cos t)J.
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}V(t)‘zzajﬁ — 2 cost + cos’t) + & sin’t = a82(2 — 2 cos t) =
1
= ’\7’(1‘)‘ :2a‘sin(£)‘ = §= Za‘sm( )‘dt

Remark: we have shown that a parametric form of the cycloid:

X =at—asint
y=a—acost

Back to our Solution:
v(t) = dt =(a—acost)i+(asin t)j,

—here we integrate on [0, 27 as at the start t = 0, and after one full

revolution t = 2.

Note: |sin(%)| =sin(%) for all t € [0, 271 (as there sin

= s§=2a fo sin(4) dt = —4a cos(%)‘oﬂ =—4a(—1

Lecture 18 Arc-Length of Parametric Curves. Applications in Dynamics
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Lecture 19 §19.1 Arc-Length: Generalization to 3D
(Three Dimensions)

—A particle moves in space

X PO=XxO? +y®)F 2R
= The velocity vectoris V(t) = % = & .74 % .j4 d [
2 dy\2 2
s=Jelun|at=JE\(%)°+ (57 + (%) ar
Example: Spiral Helix A A A
2 F(t)y=acost-i+asint-j+bt-k.
d Find the arc-length for 0 < t < T.
S: V(t)—%——asmt i+acost-j+b-k
- ;CT PENVGIES Va?sin?t + & cos? t + b2 = /@ + b,

s=Jq|V(t)|dt=[qVa +PPdt=va2 +b2-T. O

1/7
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§19.2 Wires and Thin Rods: Density and Mass

Consider a thin rod (wire) of length L lying along the x-axis with one
end at x =0:

X=0 X=/ o

Density:
if a rod is made of homogeneous material, i.e. has constant density,

then the density is | p = T —density per unit length, or line density,
where m is the total mass, and L is the length.

Remark:
if a rod is NOT homogeneous, its density is not constant, so instead

E e |

e

e X ~ Am
ax Al (S
Zhe mass  |n fact x) = lim &m
» |P(X) Ax—s0 DX




Lecture 19

Mass of an Inhomogeneous Rod:
Ay s The mass

o | If p(x) is a variable densit
[ ;.0 5 | P Y
x X, e = Am; =~ p(X;) - Ax.
e .
s Total Mass: m=) Ami~ Y p(x)-AX

i=1 i=1

Riemann Sum

Let the number of subintervals n— co:  |m= [;p(x)dx

Example:

e 2z,
0 4
A rod of variable composition has density p(x) = k x. Find its mass.

S: Wehave m= jop dx_fokxdx_

Zlo="% O



§19.3 Wires & Thin Rods: Moments and Centre of

Mass

Recall a few Basic Definitions:
i (1) A mass m, located at position x

X ~ on the x-axis, is said to have

moment | x m | about the point 0,

and moment | (x — xp) m | about the point xj.

7y “x my 75 2y

s - & o o
—

coan X,

(2) If several masses my, mo, ms,---,m, are located at xi, xo, X3, - - ,Xp,
then the total moment of the system of masses about xj is the sum
n
—measures the tendency of the system to
M, = Z(X’ —Xo)mi rotate about Xo;

i=1

n
with a particular case | My = Zx,- mj|.
i—1




(3) The centre of mass of the system of masses is the point x
about which the total moment of the system is zero: | Mz =0

n n n
This definition < 0= (x—X)m=> x;m—Xx) m=M—X-m,
=1 ' i=1

........ mm&mz :> X_ ZI 1X,ml :%
o ZI 1M; m
. e
Ao o . —Consider a thin rod
4X; of variable density p(x).
n n

Total moment about x = 0:  M,_o ~ Zx,- Amj ~ Zx,- 0(X;) AX;
i—1 i—1

Let n — oo

Riemann Sum

=My = jé X p(x) dx |—total moment of the rod about x = 0.

) d
Combine this with: |m = [Ep(x)dx| =|x= Mo _ M

m
fop
5/7




Examples:

@ Arod lying along [0, 4] has variable density 4 + x per unit length.
Find the mass and the centre of mass of this rod.

S p(x)=4+x = m=[5p(x dx_jg4+xdx_24
My—o = g xp(x) dx = [3 x (4 + x) dx = [5(4x + x?) dx = 1.

My, 19
= x =20 _ 3 =2, Answer: m =24 and X = 2.
m 24 -

@ Arod lying along [0, 2] has linear density p(x) = a+ b x. The total
mass is 8, and the centre of mass is g Find a and b.

S: p(x)=a+bx, m=38, )?_g

= 8= jop dx_joa+bx)dx—2a+2b
= Myo=m-x=8-2=2
= 20— [Zxp(x)dx =[x a+bxdx—joax+bx2)dx

3
At b4 —(a% +b%)|2=2a+ 8.

3a+4b:10}:>’b:_2’ a=6. |
6/7

Also X = M=o

So we get:




© Arod of length L has mass density p(x) = 2 + sin(%) per unit
length. Find the mass and the centre of mass of th|s rod.

S: m= fop dx—f0[2+sm( X)) dx = [2x — 2L cos( T )”o
=[2L— 2L cos(Z)] - [0— cos( )] = [m=2L(1+1)]|

=0 :1
My—o = J& x p(x) dx = [5 x [2 +sin(ZX)] dx

= [, 2xdx + a
fo fo ’: sin(%7°) dx Here
dv du = ax,
by parts: =uv— [ v du VZ*ZTTL COS(%X)
L
= x|+ x [—2 cos(57)] ‘o [_* cos(zf)] dx
—L2+0+2L 2L in(% X)‘ —L2 [sin(g)—sin(O)] =L2(1 —i—%).
—1 -0
21+ 4 4 e
S x= Moo L +7‘f) Slx=t0e) | sagr, SO
m 2L (1+ 1) 2(1+1)




Lecture 20§20.1 Differential Equations. Classifying DE

Definition

A differential equation is an equation that involves one or more
derivatives of (an) unknown function(s).

(A) An Ordinary Differential Equation (ODE) involves derivatives w.r.t.
one variable. Eg. y

% —x =0, where y(x) is an unknown function.
A Partial Differential Equation (PDE) involves partial derivatives of an
unknown function w.r.t. more than one variable.

2 . .
Eg., %Y =24, where u(x, 1) is an unknown function.

(B) The order of a differential equation is the order of the
highest-order derivative in the equation.
Eg., ¥y % = x is a first-order ODE;
x2 % +x % 1 2=0is a second-order ODE;
9u — 9%y | uig 3 second-order PDE.

%]



(C) Linear DEs:
An n-th order linear ODE has the form:

n n—1 2
an(X) Gk +an—1 (%) Gt +---+ap(x) GF +a1(x) & +ao(x) y(x) = f(x)

E.g., x?y” +y’ =sinxis a linear second-order ODE;
y2y" 4+ y’ =sin x is a nonlinear ODE.

If| f(x) =0}, it is called a homogeneous linear ODE.
E.g., y”"+xy’+y=0is homogeneous;

y"” + xy’ + x = 0 is nonhomogeneous
(here f(x) = —x).




§20.2 Equations of Growth and Decay

Perhaps the best-known DE s Y —ky| (%)

—the rate % of change of y(x) is proportlonal to the current value of y.

To solve this: —Rewrite as| 1.2 = k| where y = y(x).

~Integrate w.r.t. x: [* W dx = [“k-dx+C.
—Make a substitution y = y(x) with % -dx =dy
:Iy%:fxlﬂdx—ﬁ—c (%)

~—
Inly| kx

= Inlyl=kx+C = |y| =e*tC = gl el = Cy ek,
where C; =e® >0 = y=+Cie¥,

= is a solution of () for any constant C,

including C = 0.
Note: here C = 0 gives a solution y = 0 for all x

—check that it is indeed a particular solution of (x).



Remark: (x*) can be obtained directly from (x) as follows:

—Formally separate variables:

¥ -k
~ only x
only y

—Integrate:  [Y % = [* k dx + C—so0 we again get (xx)...
y

NOTE:

(x) is an example of a DE with separable variables.

If in addition to (), we know that \ Y=Y, when x =0

(this is called an initial condition),

thenyy=Cef°=C-1=C

=

y = yo e

is the unique solution of (), (xxx).

(i) yo>0, k>0:

pTee®

—exponential
growth

(i) yo>0, k<O:

—exponential
decay

(i) yo >0, k=0:

Y=,

X

—constant




Examples:

@ Population Growth: A colony of bacteria increases in size at
about 1% per minute. How long does it take to double in size?

S: Lett =time(min); y = y(t) = size of population at time t.

For y(t+ At) — y(t) = the number of bacteria added during a
small time interval At, one has

yit+a0 -yt ~ (01 y(t). At = YADY(1 (.01 - y(1)
~1% of the population ~ time

Let At —0: |% =(.01)-y| = Solutionis |y(t) = yoe®'|,
where yp = y(0) = initial size of the population.

Back to our question:
asy =2y att=T=77, s02y=y(T)=ye?7,
s02=2e%T7 soIn2=.01T, so T =100 In2 ~ 69.3(min). O




© Radioactive Decay: Radioactive elements decay at a rate
proportional to the number of radioactive elements present.

S: (Similarly to the previous example), we model this as

% — Ay, with some A > 0,

= The solutionis | y(t) = ype |

Here t =time, and y(t) = the number of radioactive elements at time t.

Half-Life: The time Ty ,, it takes for half of the initial amount to
decay is called half-life of the element.

Its relation to A is obtained from: %yo =yoe M

:e_?‘T1/2 = In(%) =—A T1/2 = T1/2:¥—them
In2

N[

=

Note also that | A = 1n2




© Radiocarbon Dating:
C-14 decays into C-12. Note that C-14 has a half-life of 5700 years.
Find the age of a sample in which 20% of the C-14 decayed.

In2 In2

S: Wehave Ty p =12 = A= = _—— ~1216-107%
= NI Ti2 5700
5700
We look for t = T such that 08yg=yoe '
e~ See—W—
80% of the original amount of C-14 =y(T)

= e =08 = —AT=1In(0.8)

= T= _In7(\o'8) ~ TZieqos ~ 1800 years. [




Lecture 21

Consider First-Order ODE of the form | % = f(x,y)| (#)
NOTE:
The general solution of this ODE involves an arbitrary constant.
To single out a unigue solution from those given by the general
solution formula, we specify y at some initial value: |y(xg) = yo| [(*x)
(this is called an initial condition);

(%), (*x) is called an initial-value problem (IVP).

We shall consider a few special cases:

§21.1 Simplest Case | % = f(x)

= J“)’:O ‘é{ dt = [}, o fat = |y(x) =y + f)fo f(t) dt —provided we
can integrate f...

=y(t |X0—y X)=y(xo)=y(X)—yo
Remark: If yq is not specified, then| y(x) = C + jj((o f(t)dt

where C is an arbitrary constant.



Example' % =cosx. (1)
S: y(x) = [ cosx dx = sin x + C = general solution of ODE (1).

Add an initial condition, e.g., y(0)=2. (2)
Then y(O) =sin0+C = C=2 = y(x)=2+sinxisaunique
solution of IVP (1), (2).

7 -
§21.2 First- Order ODEs with Separable Variables
(Cj’i =f(x)g(y) (3) Formal Solution of IVP (3), (4):
y(x0) = yo (4) —Separate variables: ;% = f(x) dx
\1’/ only x

. X on
—Integrate formally: }y,o % =[5, () dt]... vy
Explanation/Justification: ~ —Rewrite (3) as (1 3 % = f(x) |

—Integrate w.r.t. x: % oot 9 at = [} (1) - ot
—Make a substitution s = y(t) with % -dt = ds and limits
(=X = s=yX)=y 1 _ sds = [Xf(1) - dt
t=x = s=yx)=y } yog j

—the formula in our formal solution!




Similarly, Formal Solution of DE (3) only:

—Separate variables as before: % = f(x) dx
~

only y only x
. d
—Integrate formally: ~ [” o7 = [“f(x)dx+ C ...
EXampIeS: -----------------------------------------------------------
@ Solvethe IVP: % = x2 % and y(1) =3.

S: —Separate variables: % — x2 dx.
—Integrate: j% =[x2dx+C. = —;, = %3 + C.

2y?
—Use the initial condition to find C: —ﬁ = g +C = C=—4%.
1 _ X8 7 2 _ 1 _ _ 18 2__ 9
Now —z=%-% = ' =g 7 a7 TV =76
3 18
_ : e 3 ___ 3
Now it seems that we have 2 solutions: y = T e and y = N
. G . 3 . . _ 3 .
Recall the initial condition: 3 = T e true; 3 = N anri false.
Answer: unique solution | y = —==— | (valid if 7 —6x° > 0, i.e. x < (%) 7).




. d

@ Solve the DE: & = o

S: —Separate variables: y dy = x dx.
—Integrate: [ydy = jxdx+ C

S L=21C 5 p2=x21C

Answer: |y =+vx2+C’andy = —\/x2 + C’

where C’ is an arbitrary constant (valid for x such that x> + C’ > 0).

© Solvethe IVP: % = (1 + y?)e* and y(0) = 0.

S: —Separate variables: 1% > = eX dx.

1+y2 = [eXdx+ C.
= tan 'y=e4+C = y=tan(eX+C).
—Use the initial condition:
0=tan(e? +C)=tan(1+C) = C=—1.
Answer: ‘y =tan(eX —1) ‘

—Integrate: [ -2




Q Solvethe IVP: (s+1) % = s(1—sint) and s(0) = 1.

S: —Separate variables: £ ds = (1 —sint) dt.
N—— S~——
only s only ¢

—Integrate:  [(1+ %) ds=[(1—sint)dt+ C.

= S+Inls|=t+cost+ C.

—Use the initial condition: s=1whent=0 so

1+In1|=04+cos0+C = C=

-0 =1
Answer: s+ In|s|=1t+cost
—Note: one cannot get an explicit formula for s in terms of ...

§21.3 Linear First-Order ODEs
& tPXy=Qkx)

—If (5) is homogeneous, i.e. Q(x) = 0, then separate variables...

0.

—If (5) is nonhomogeneous, i.e. Q(x) # 0, see the next Lecture 22...
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Lecture 22 §22.1 Linear First-Order ODEs
F+PX)y=Qx)]| (+)

—Multiply by v(x): v(x) % + v(x) P(x) y = v(x) Q(x)

= %—choose v(x) to satisfy this!

_y 4y dv,__d
=VgtaY=a(vy)

So we observe that:
If v(x) satisfies | 9“ = v P(x)| (1), then () yields d%(vy) =vQx)|(2).

dx

NOTE: v(x) that satisfies (1) is called an integrating factor for (x).

= To solve (x): —Solve (1) by separating variables:
& _yP(x) = [ = [P(x)dx = Inlvi=[P(x)dx =|v=elPX|

—Solve (2) (using v(x) already known) as follows:
= vy =Jv(0) Q) dx+ C =|y(x) = i (J vix) Qx) dx + C)




§22.2 Examples

@ Solvethe IVP:  x % = x +2y (where x > 0), y(1) =0,

S: ltis a first-order linear ODE =
—Rewrite it in the form () as % —2 y =
P(
=P(x

<
=Q(x)

—

—Hence the integrating factor is
v = el P ox — ol (-5) ox _ g—2inx (where we used x >0) = v = 1.

x2
e e 1 dy 12 1
—Our DE, multiplied by v,is: 5 F — 52y =
H—/
=2( Ly
= %(f)=x = %=[7+C=—3%+C =|y=—x+Cx

—Use the initial condition:
y=0atx=1s00=—-1+C-12 = C=1 =|y=-—x+x2|




X ~— ~—

@ Solve 2+ x y=x°.
P(x) Q(x)

S: —The integrating factoris v = el P(X)dx — glxdx _ gx*/2,
—Multiply the DE by v:  e¥/2 % 4 xe/2 y = /2 x3
(ex2/2)/
d (ax?/2 — 43 2/2 272\, _ 3 2/2
= Z(e/2.y)=x3.e/2 = /2. y=[ x3 e/%dx

2
X2 .x-eX/?dx
o =
u av

2 2
Weuse U= x2 = du=2xdx, dv—x-e/2dx=v=e/2 so

e’ /2.y =uv—[vdu=x2. /2 [e°/2. 2xdx
— x2. ex2/2_26x2/2+ C

= |y = x2 -2+ Ce **/2|—general solution.




[/
+x =1(where x>0). 5. The integrating factor is

© Solve
v=elPXIdx — ol ¥ — ghx — x (where we used x > 0).
—NMultiply the DE by v = x: de +y=x
—
:a(x}’)
= Lxy)=x = xy=[xdx=%5+C =|y=5+¢|
Q (P+1)g +ty=35.8:—Divideby (B+1): ¥+ 25 y=13725
—The integrating factor is =P(D)
V() = el Pltat — o 2 d IIn(E41) — (2 4 1)1/2,
substitute u=12+4-1
: . d
—Multiply the DE by v: (£ + 1)"2 ZF + 5z ¥ = 3 @iy

g (rr1)1/2y)

= (B+1)12.y=1[ o s =1 In(t+VE+1)+C

In(t+v+1 i
n(t+ )+ ¢ r—general solution.

V= 2V 121 V241
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§22.3 Example from Electronics: RL-Circuits

ANV , _
i— The circuit contains a resistor of size R ohms,
I#) - ;
~/ aninductor of size L henrys,
LW a time-varying source of V(t) volts.
L /(1) is the current (amperes) at time t.

It is known that the current /(1) satisfies: | L &/ + R/ = V(i)

—a first-order linear DE.
—The integrating factor is v(t) = el P(0dt — gl Tat — o',

—Multiply the DE (already divided by L) by v:
eﬁ% i+B RII Rt V(t)
da T L

= et l=[et Ya =|it)=2" [el vit)at




—Now consider a particular case of constant

| V(1) = Vo|and[1(0) = 0}
i.e. there is a switch in the circuit that is initially open, and then closed
attime t = 0.
_ At
= I(t) =2t je%\/odt:%e—%( eL+C> ( +C’ )

where C’ = L is arbitrary.

Now use /(0) =0 = 0= (1+C'e™®) = C' =1
= =i ="% (1-e1)
s -

+ =

—Note: as t — oo, one gets I(t) — VO = the Ohm’s Law value!
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Lecture 23 Numerical Solution of First-Order ODEs

Consider the Initial-Value Problem ‘y’ =f(x,y), y(x)= yo‘ (%)

44 )
% ‘*%4 e e

[ ’V% X <
—this can be interpreted as that at each x,
the slope of the curve y(x) is f(x, y).

If we can NOT solve () explicitly, we can find approximate values
Yn =~ y(xn) | at the points x, = xo + nh:

- /}:ﬂf-/
- ataLie s
A Ay Xn
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§23.1 Euler Method

Integrate y’ = f(x, y) over the interval [xp, X, 1]:
j;:“ y'dx = j;;’“ f(x,y) dx

T & i =
Host //: =y 00" =y Gt i) =y )

g S0 y(Xni1) = y(xn) = [{17 f(x, y(x)) dx = hf(xn, y(xn))

—here we used the Rectangular Rule
of Numerical Integration

Now, we replace the exact values y(x,) by approximate values y,, and
also replace ~ by =, and so get the definition of a numerical method:

] Y(Xni1) = Yne1 = Yo+ hf(Xn, yn) \ (+x) —called the Euler Method.

)gl X/u»/

A

NOTE: one can rewrite (xx) as

Y (Xo) = Yo (use Initial Condition)

Y(xo+h) = y1 = yo+ hf(xo, ¥o) —i.e. the computation goes as

Y(Xo+2h) = y2 = y1 + hf(x1, y1)
o= Yi—= Yoo Y3

Y(Xo+3h) =~ y3=y2+ hf(xa, y2)---
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INTERPRETATION: note that 2ot = Yot — f(x, ),

n+1—Xn

by the Euler method ()

i.e. the slope of the computed solution on each (xp, Xn1) is f(Xn, ¥n):
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Example: consider the IVP: y’ = x + y subject to y(0) = 0.
Exercise: show that the exact solutionis y(x) =e* —x—1.

Euler Method: Choose h=0.2 so

Xn=Xo+hn=02n; ‘y(O):yozo‘

Using f(x,y) = x + y one gets

’}/(Xnﬂ) =y(0.2[n+1]) = Yny1 = Yn+ hf(Xn, ¥n) :}/n+0.2(xn+}/n)‘

computed | exact error
n| xp=0.2n Yn y(xn) | Y(Xn) — ¥n
0 0 0 0 0
1 0.2 0 0.021 0.021
2 0.4 0.04 0.092 0.052
3 0.6 0.128 0.222 0.094
4 0.8 0.274 0.426 0.152

Error y(x,) — yn: at each step, the Euler method picks up an error of

order A2, but the error accumulate from step to step, so at x = x,, the

erroris of order n-h? = (nh)-h=x,-h~ h.
~—
<length of the interval
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§23.2 The improved Euler Method (Predictor-Corrector)
Y(Xni1) = y(xa) = [} £(x, y(x)) dx =~ § h [F(xn, ¥ (xn)) + F(Xn11, ¥ (Xn11))]

Recall from §23.1

HX (lx),? —here we use the Trapezoidal Rule
of Numerical Integration.

If we replace the exact values y(x,) by approximate
values y,, and also replace ~ by =, then we get

a numerical method: .1 = Y+ 5 0 [f(Xn, ¥n) + f(Xpi1, Yni1)]-
—This method is expected to be more accurate that the Euler method.
However, we have the unknown value y, ., on the right-hand side!!

—To get an easier-to-implement method, replace this y, 1 by the Euler
approximation from §23.1 (that we now denote y;, ;), so we arrive at

Improved Euler Method

y(Xo) =Yo| ; | Vi1 =Yn+ hf(xn yn) ="predictor” stage;

Y(Xni1) = Ynrt = Yn+ 5 W [f(Xn, ¥n) + f(Xn11, ¥, ;)] [="corrector” stage
5/9




Example: consider the IVP: y’ = x + y subject to y(0) = 0.

Improved Euler Method: Choose h=0.2s0 x, = X9+ hn=0.2n.
¥(0) =y =0|

Note that f(x, y) = x + y so

Y1 =Yn+hf(Xn, Yn) = Yn+0.2(Xn+ yn)

Next we get: | y(Xpi1) = Yny1 = Yn + % h [f(Xn, Yn) + f(Xn1, Yy )]

= y¥n+0.1 [(Xn + ¥n) + (Xnt1 + V4 )]

predictor | corrected | exact error
Xn Yn Yn Y(Xn) | y(Xn) = ¥n
0 0 0 0 0
0.2 0 0.02 0.0214 | 0.0014

0.4 | 0.064 0.0884 | 0.0918 | 0.0034
0.6 | 0.1861 0.2158 | 0.2221 0.0063
0.8 | 0.3790 0.4153 | 0.4255 | 0.0102
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Lecture 23 Numerical Solution of First-Order ODEs

Error y(x,) — yn: at each step, the Improved Euler method picks up an

error of order h%, but the error accumulate from step to step, so at
X = Xp, the error is of order n- h® = (nh) -h? = x,, - h* ~ h2.
~—~—

<length of the interval

E.g.: atx,=1theerrorisoforderx,-h°=1-h?>=h?
(xn = 1 is a representative choice as it’s not too big, not too small).

So the Improved Euler Method is a second-order method (while the
Euler method of §23.1 is a first-order method).

In real-world applications, one uses more accurate methods, e.g.,
Fourth-Order Runge-Kutta methods (see the prime text for further
details).

Its error at x = x,, is of order n- h°® = (nh) -h* = x, - h*;

~—
<length of the interval

in particular, at x, = 1, the error is of order h*.



Another Example: consider the IVP:
y' = x — y subject to y(0) = 1 on [0, 1] with the step size h=0.2
using the Euler and the Improved Euler methods.

Exercise: show that the exact solutionis y(x) =x—1+2¢e *.

Solution: We have f(x,y) =x—y, xo=0, and‘y(O) =y =1 ‘
alsoh=02sox,=x9+hn=02n forn=0,---,5.

(a) Euler: y(Xni1) = Yni1 = Yn+ hf(Xn, ¥n),

So ‘ynﬂ =yn+0.2(Xp— yn) ‘ subject to .

(b) Improved Euler:
Vi1 |= Yo+ hf(Xa, yn) =|ya+0.2(xa — yn) | (as above).
Nextwe get: | y(xn1) ~ Yni1|= Yo+ 5 0 [f0xn, Yn) + FXn 11, Vi, 1)]

=Yn+0.1 [(\)(f_/_yn)‘f‘( Xni1 —Yiiq)]
0.2n 0.2 (n+1)
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Numerical Results:

Euler Improved Euler
error error

ni Xn Yn Y(Xn) — ¥n Yn Y(Xn) = ¥n
0| 0 1 0 1 0
1102 08 0.037 0.84 —0.0025
2,04 068 0.061 0.7448 | —0.0041
3|06 | 0.624 0.073 0.7027 | —0.0051
41081 0619 0.079 0.7042 | —0.0055
511.0 | 0.655 0.080 0.7414 | —0.0057

the error is over 10%

the error is less than 1%!
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Lecture 24 Second-Order ODEs

(involve second-order derivatives)

—A second-order ODE is called linear if it can be written as
" +pX)y +qx)y=RX)| ()
for some functions p(x) and q(x), called the coefficients.

and some function R(x) called the right-hand side.

Otherwise it is called nonlinear.

E.g., y”+ xy =cosx is linear;
while yy” + xy+ y® = 0is nonlinear.

—In the linear case (x):
if R(x) =0, it is called homogeneous;
if R(x) # 0, it is called nonhomogeneous.
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—A general solution of (x) is a formula that describes
all solutions of () as particular cases.

Example: for the ODE 2x? y” — x y’ — 2 y = 4, the general solution is
y=Cix2+C % — 2 (where Cy, C, are arbitrary constants).

NOTE: A general solution of a linear second-order ODE must involve
two arbitrary constants.

A particular solution is found by obtaining values for the 2 arbitrary
constants from 2 initial or boundary conditions, e.g.,

y(xo) =A, y'(x)=B8B Initial conditions
y(x) =A y(xq)=B Boundary conditions
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§24.1 Homogeneous Second-Order ODEs

V" +p(x)y +q(x)y =0] () (its (+) with R(x) = 0)

SUPERPOSITION PRINCIPLE:

If y;(x) and yo(x) are any 2 solutions of («x), then \ Ayi(X) + Bys(x) \
is also a solution of (xx) for any real A and B.

Proof:
Yi'+px)yi+qx)y1 =0

vy +pX)ys+qx)y2= 0 -

(Ays +Bys)" +p(x) (Ays + Bys)' +q(x) (Ays + Bys) =0
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A general solution of a homogeneous linear second-order ODE
always has the form: ‘y = C1y1(x) + Co yo(x) ‘

where Cq, C, are arbitrary constants,
y1(x), y=(x) are two different particular solutions of the ODE

such that ;‘2% = constant.

Such particular solutions are called linearly independent.

CONCLUSION: It suffices to find 2 linearly independent particular
solutions to construct a general solution for equation (x:x).

Example:
forthe ODE 2x°y” —xy' —2y =0,

and yi(x) = x2, yo(x) = % are two particular solutions,
so0 a general solution is y = Cy x2 + Co %

where Cq, C, are arbitrary constants.
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§24.2 Linear Second-Order ODEs with Constant

Coefficients: Case | Homogeneous ODEs

If the coefficients p(x) and g(x) in (%) are constant, this ODE is called
a linear ODE with constant coefficients.

Consider the homogeneous and nonhomogeneous cases separately.

Consider a homogeneous linear second-order ODE
with constant coefficients: ‘y“ +by'+cy=0 ‘ (%)
To find a solution, we make a conjecture that it has the form
with some (unknown at this stage) constant r.
To find r: substitute our guess in (xx):
y:erx = y/:rerx = y//:r2erx
so substitution in (xx) yields: rPe’*+bre*+ce’*X=0 =
‘r2+br+c:0‘ ( * %)
—this quadratic equation is called auxiliary (characteristic) for ODE ().
_ —btvVb?—4c
> :

Its roots are | r




Case 1: let .

Then (x * *) has 2 distinct real roots ry and r».

So ODE (xx*) has 2 different particular solutions y; = e""* and y» = e2*.

So general solutionis |y = Cy €% + C, e2¥
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Case 2: let . Then (= ) has only one root ry = —2

so ODE (xx) has a particular solution y; = e"*.

\S]

But to get a general solution, we need another particular solution y4!

First, rewrite (xx) as|y” + by’ + %2 y=0]|

Make another solution guess | y» = x - €% |.

To check, whether y» is indeed a solution, substitute it into our ODE:
= yi=(1+x-n)e"* = y)/=02n+x r?)e"

Hence

Vi +bys+Zy=[2rn+x-)+b(1+x-rn)+%x] e =0

=0as rp=—5 (Ex.)
Hence y»(x) is indeed another particular solution of (xx) so the general
solution y = Cy y1(x) + Co y»(x) becomes \y = (Cy + Cox) e
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Case 3: let

—similar to Case 1: (* * %) has 2 distinct roots,
but they are complex: 1 =a+iandrn=o0—if.

As in Case 1, the ODE (xx) has a general solution
y = C1 enx 4+ CZ eh2X — C1 e(oc+i[3}x + CZ e(oc—i[S)x
where Cq, Co are arbitrary complex constants.

To restrict t.his formula to real functions and constants, recall that
elatiB)X — gaXgl BX — g*X(cos(B X) + i sin(p X))
ela—iB)X — gxXg=iBx — e"‘x(cos((ﬁ X)—isin(p X))

These imply: y(x) = e**((Cy + Cy) cos(B x) + i (Ci — C2) sin(B x))
~——— ——
o} C}
Finally, a general solution of (xx) is written as
y = e**(Cy cos(B x) + C sin(p x))

(where C{, C/ are arbitrary real constants).
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For a homogeneous linear second-order ODE with constant
coefficients: ’y”+by’+cy :O\ (%)

Summary: Roots of (* x %) General Solution of (xx)

(1) b>—4c>0 | 2realroots: ry, r» | y = Cy €% + C, X

(2) b>—4c=0 | 1realrootry =—2| y = (Cy + Cy x) ¥

hVlley

(3) b>—4c <0 |2 complex roots: | y =
no=o+if eo‘X(C1 cos(BX)—i—Cgsin(Bx))

where r>+br+c=0  (x%x)
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Examples:

_ /124 (2)
Q@ )y +y —2y=0.8r’+r-2=0 =r=—Y_ "%

n=-2, n=1= y :eizx, ygzex y:C1 e*2X+CgeX

Q@ 16y” -8y '+y=0. S:16r2—-8r+1=0
= r_BiW 1 —single real root |y = (Cy + Co x) /4

Q@ y'+4y' +13y =0
S: rPrar413=0 = r="4EVEAB_ 54 /9
r=-2+38iirn=—2+4+38i, h=—2-3i (|e x=-2,3=23)

y= e_zx(C1 cos(3 x) + Co sin(3 X))
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§24.3 Physical Example: Damped Mass-Spring
System

> X
S

; c
N L J—— F-pasueor
e s ar o b T e
—A mass m is attached to a spring with spring constant k,
and to a dashpod with damping coefficient c.
Its displacement at time t (w.r.t. the rest point) is x(1).
RECALL: By Newton’s Second Law: mass x acceleration = force
mxa= —Kk-x —Cc-Vv
S~~~ N

SNNNNS

Hook’sforce is proportional to X damping force is proportional to v

—Here a = dtz is the acceleration, v = % is the velocity.

So x(t) satisfies the ODE: dt2 +cd G +Hkx=0

(with positive constants m, ¢, k > 0).
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(a)|c=0| i.e. nodamping:

called simple harmonic motion,

mr?+0-r+ k =0 has complex roots ry o = ii\/j

= x(t) = C cos(\/gt) + G sin(\/%t)

(b) \c >0, ¢® < 4mk \ i.e. Damped Oscillator:

K/ch oﬁcz‘r o

3=

‘mr2+cr+k:0‘ (s k%)

has roots | ri o =

—c:t\/c2—4mk

i.e. I’12—

+ip W|th[3f7V4ka

.:.> x(t)=e" o (C1 cos(pt)+ Co sm((it))

(c)|c® = 4mk]|, i.e. Critically Damped case:

(x***) has a single root: ry = —

C
2m

= x(t)=(Ci+ Cot)e zn! —no oscillations

(d)|c? > 4mk|, i.e. Overdamped case:

(xxxx) has 2realroots ry <rn <0

= x(t) = Cy el + Cy e?! —decay, no oscillations...
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Lecture 25 Linear Second-Order ODEs with
Constant Coefficients: Case || Nonhomogeneous ODEs

Consider a nonhomogeneous linear second-order ODE
Y +pX)y +qx)y =RX)| (%)

The corresponding homogeneous equation: | v/ +py/ +qyn =0/ (*x)

—If yp(x) is any particular solution of (x), while y;(x) is any solution of
(+x), then | yp(x) 4 yn(x) |is also a solution of (x).

Yo +PYp+qyp=R(X)
Proof: Y/ +pyi+qyn=0 O
= Wp+yn)" +pWp+yn) +a(yp+yn) =R(X)




Hence, |general solution of articular general  solution
nonhomogeneous |= partic +|of homogeneous
. solution of (x) .
equation (x) equation (xx)

this must involve 2 arbitrary constants

= To find a general solution of nonhomogeneous equation (x):

Step 1: Find a general solution of the corresponding homogeneous
equation (xx) (e.g., as in §24.2).

Step 2: Add a particular solution of (x).
—To find this, there are various methods; one of them is

Method of Undetermined Coefficients (see below)



§25.1 Method of Undetermined Coefficients

Method of Undetermined Coefficients
— applies to the constant-coefficient ‘ y"+by’'+cy =R(x) ‘ (%)

R(x) \ Try yp(x) =
x A
ax+p Ax+ B
ax®+pBx+y Ax>+Bx+C
polynomial of degree n another poly of the same degree n
o e Aelx
(+ B x) e (Ax + B) e
« cos(kx) + B sin(kx) A cos(kx) + B sin(kx)
(ocx + B) cos(kx) + (v x + &) sin(kx) [Ax + B) cos(kx) + (C x + D) sin(kx)

Make this guess, substitute in (x),
then choose A, B, C ... in yp(x) so that y/ + by, + cyp = R(x)...



Examples:
0 y// +y — X2
Step 1: y/'+yn=0 —homogeneous
rP+1=0 = r=x=i :>’yh:C1 -cosX+C2~sinX‘

Step 2: We guess that yp:Ax2+Bx+C (see the Table)
= Yyp=2Ax+B = yJ =2A
Substitute in the ODE: ~ 2A + (Ax? + Bx 4+ C) = x?
:yf;/ =Yp
= AX’4+Bx+(2A+C)=1-x2
= A=1 B=0, (2A+C)=0= C=-2A=-2

Finally, a general solution:
y=(x*—2)+ Cy-cosx + Cy -sin X




Q@ y'—y —2y=10cost subjectto y(0)=0 and y’(0) = 2.
Plan: (i) find a general solution of the ODE; (ii) use the initial conditions.

(i) Step 1: v/ — ¥/ — 2y, =0 —homogeneous
rP—r—2=0 n=2 n=—1=|y,=0Ce'+Ce!

Step 2: Ourguessis yp = A cost+ Bsint
= Yp=—Asint+Bcost =y =—Acost—Bsint
So yj — yp—2yp = cost(—A—B—2A) +sint(—B+ A—2B)

:cost(—SA—B) —l—sint(A—SB) =10 cost

-3A—-B=10
A—3B=0 = B=—-1, A=-3 :>‘yp:—3cost—sinz“

= General solution: | y = (—3 cost —sint) + C; el + Cr e !




Example 2 (continued): (ii) Use initial conditions

J+Ci-14+Co-1 = Ci+Co=3

y(0)=0: = 0=(—3cosQ—sin0
=1 =0

y'(0)=2: Notethaty’ = (3 sint—cost)+2C1 el —Cre! =

ZZ(Sw—COSO)+ZC11—CQ1 = 2C;—C>=3

Ci+C>=3 =0 =1
2Ci—Co,=3[=C1=2C=1= y=(—8cost—sint)+2e* + et




§25.2 (Important) Remark 1

Remark 1: Consider|y” + by’ + cy = R¢(x) + Ra(x) ‘ (k%)

If y//+by{ +cys =Rq(x)and y)' + byj + cy> = Ra(x)

then y; + y» is a particular solution of ().



Further Examples:

Q@ y’'+4y=sint+2e!. Step1: y//+ 4y, =0—homogeneous
rP+4=0 r=+2ji = ‘yh:C1 cos(2t) + Co sin(2t)‘

Step 2: R(x) Try yp(x) =
Our Table = sint Acost+ Bsint
e ! Cet
Remark 1 = |sint+2e 1| Acost+ Bsint+ Ce!

Soy,=Acost+Bsint+Ce ! = Vg =—A cost—Bsint+Ce!
¥y +4yp = (—Acost—Bsint+Ce ') +4 (Acost+Bsint+Ce™ )
3A0} =3Acost+3Bsint+5Ce '=sint+2e !

3B=1; = A=0,B=},C=2 =|y,=Lsint+2e!
5C=2

General solution: |y = % sint+ £ e '+ C; cos(2t) + C; sin(21)




§25.3 (Very Important) Remark 2

—If the guess from the Table happens to be a particular solution of the

homogeneous equation (xx), then use |y, = x - (guess from Table) .

—If the new guess also happens to be a particular solution of the

homogeneous equation (xx), then use |y, = x?. (guess from Table)




Further Examples: ...
Q@ y -2y —3y=¢e"*

Step 1: |y, = Cye¥ + Coe | (check!)

Step 2: The Table suggests: |y, = Ae | butitis a particular case of yj:

—it’s clear from the y;, formula (set C; = 0 and C, = A);
—alternatively, one can see this directly:
(Ae )" —2(Ae X)) —3(Ae*)=0#£¢e %

= Clearly, y, = Ae * doesn’t work!

By Remark 2, try |y, =x-Ae ™|
Yo=All—x)e™™ y/=Ax-2) e~
V9 —2yj =3y =A(x-2)—2(1-x)-3x) e *=A(-4)e*=e*

—dA=1=A=-1=yp=—>ItxeX=ly=—"1xe X+ C e+ Cre*




e y//+4y/_|_4y2672t

Step1: r2+4r+4=0 r=—2—single root

Step 2: The Table suggests |y, = Ae 2

=>|yh=(Ci+Cat)e®

But (Ae2))" +4(Ae2!) +4(Ae ) =0, £e 2
(can be checked directly; of from the y}, formula...)

= By Remark 2,try |y, =t-Ae 2

—again won't work as

(t-Ae 20" 1 4(t-Ae2) +4(t-Ae?) =0, £e
(can be checked directly; of from the yj, formula...)

= By Remark 2, now try |y, =1>-Ae 2

yp=(2t—212)-Ae ®, y) =(2—8t+4t%) . Ae ?
Yy +4yp+4y,=((2—8t+4t2) +4 (2t —212) +41%) - Ae ™

=2Ae =g

= A=

= |yp= 122

Nl

=

y=5te 2+ (Ci+Ct)e




(6 ) y" 4+ 4y = 8 cos(2t)

Step 1: \ ¥ = Cy cos(2t) + Co sin(zt)\ (see Example 3).

Step 2: The Table suggests | yp, = A cos(2t) + B sin(21)
But will NOT work as it’s a particular case of the y, formula...

= By Remark 2, try |y, =t- (A cos(2t) + B sin(2t))
= Yy +4yp =4B cos(2t) + 4 (—A) sin(2t) = 8 cos(21)
= B=2, A=0 so |)y,=_2tsin(2t)

Finally, we get the
Answer: |y =2t sin(21) + C cos(2t) + Cp sin(21) ]

NOTE: this phenomenon is referred to as resonance
(see the prime text....)



Lecture 26  §26.1 Functions of several variables

R" = {(x1, X2, X3,--- , Xs) Where each x; € R, i =1,2,---,n}
—is the set of ordered n-tuplets of real numbers;
this space is called Euclidean n-space.
@ R? (here n=2):
each (xy, Xo) is represented
by a point on the plane:

@ R® (here n=3):
each (x4, X2, X3) is represented
by a point in space:

@ R* (here n=4): each point (x1, X2, X3, X4) is an algebraic object
(i.e. no obvious geometric representation).
E.g.: (1,—1,0,3) and (8,1.2, -5, 1) are both elements of R*.



Definition

A function f of n real variables is a rule

that assigns a unique real number, denoted f(xy, X2, X3, -+ , Xp)
to each point (x1, X2, x3, - - - , x,) in the n-space R".
Example:

afunction f : B3+ Ris defined by f(x1, X2, x3) = X2 — 2x2x3.
Now, e.g., f(1,2,3) =12—-2.2.3 = —11.

NOTE: For simplicity, we mainly consider functions of two variables,
so we denote these variables by x and y (rather than x; and x»), while

the values of the function are denoted by zso |z = f(x, y) |



Graphical Representation: p
—A function y = f(x) of one variable J,é’ 2
is represented by a curve on the plane: | X

X
—Similarly, a function z = f(x, y) of two variables is represented by
surface in space, obtained as follows:

for each pair (x, y) € R?, use z=f(x, y)

as the "signed” height above/below

the (x, y)-plane:

—Definitions of limits, continuity, ... can be extended
to functions of several variables.
—Similarly, f(x, y) may be defined for all (x, y) € R?,
or on some subset D ¢ R? called the domain of f.
E.g.: the function f(x, y) = x + /1 — (x2 + y2) has domain:
& D = {(x, y) such that x2 + y? < 1} —unit disk.

N\

| X
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§26.2 Partial Differentiation
The partial derivative of f(x, y) w.r.t. x at (xo, yo) is

or i 10000 T00.00)
ox 1(x0,¥0) h—0 h

(provided this limit exists).

Interpretation: we freeze y = yy and differentiate the function f(x, yo)
of one variable x in the standard way w.r.t. x.
Thus £ }  is the rate of change (slope) of f as we move
from (xg, ¥o) in the x-direction.

The partial derivative of f(x, y) w.r.t. y at (xg, Vo) is

Qf‘ — Jim [XoXotk)—f(X.¥0)
oy llxo¥o) k0 k

(provided this limit exists).

Interpretation: we freeze x = xp and differentiate the function f(xg, y)
of one variable y in the standard way w.r.t. y.

Thus g}”(x Vo) is the rate of change (slope) of f as we move
.......................... from (xo, yo) in the y-direction.
%= %xl(xy)=hixy
Notation: for the function z = f(x, ox — ax -
XY 826 fix,y) = 1y (x,y)

4/7



Lecture 26

To evaluate ! differentiate w.r.t. x treating y as a constant.

E.g.: cg((ezx 3x2) = 26 —3-2x.

Similarly, 2 (e"* — y?x2) = y /X — y2 . 2x.

To evaluate af differentiate w.r.t. y treatlng X as a constant.

Eg.: dysm(ky) = cos(k y?) - (ky) = cos(k y?) - k- 2y.
Similarly, 2 sm(x3y ) = cos(x2 y?) - 2 (x3 y?) = cos(x3 y?) - x3 - 2y.

Examples:
Q f(x,y)=2x+3y +x°y + & siny
O =24 0+2xy+ € siny; g—f =0+3+x%+ e cosy.

© The pressure in an ideal gas is p = % Find the rate of change of
pressure p: (i) with temperature T; (ii) with volume V,
when T =100 and V = 1.

S: (i) 9p _ 1. @‘ 1_4
S oT — V> 3Tl(001) — 1
(unlts of pressure per unit temperature).
(i) 2L =—T; @‘ =100 — 100
W 3v="vz> 3vlioo1) = 12 _
(units of pressure per unit volume). O



§26.3 Second Partial Derivatives

Assuming the limits exist, define:

@ Pure second partial derivatives:

22f
ox2
2%
oy?

= (3 =t
= %(%) = fyy

—w.r.t. x

—w.rt. y

@ Mixed second partial derivatives

o2f
oxoy

02f

oy ox

— 0
— ox

_ 9

oy

(
(

of

oy

of
ox

):fyx
):fxy

NOTE: here "interior” differentiation occurs first!!!
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Example: Find all first and second partial derivatives for
f(x,y) = 3x% —2xy? + sin(xy).
S: g— = 6Xx —2y? + y cos(xy); ay =0 —4xy + x cos(xy);

g—ié =6—0+y (—y sin(xy)) =6— y? sin(xy);
g%; = —4x + x (—x sin(xy)) = —4x — x® sin(xy);

a?éfy = %(—4xy + X cos(Xy)) =—4y + [cos(xy) —Xy sin(Xy)];

Product Rule

a?,zf = oy (6x =2y +y cos(xy)) = 0 — 4y + [cos(xy) — x y sin(xy)].
Product Rule O
NOTE: in this example a?fafy = a?,zafx —itis NOT a coincidence! |,

The Mixed Derivative Theorem
If f(x, y) and all its first and second partial derivatives are defined and

continuous in a region R, then in this region:
92f 9%f

ox 0y oy ox




Lecture 27 §27.1 Taylor Series in Two Variables

Recall: for one variable we have the Taylor series expansion:
f(x+h) =Ff(x)+hf'(x)+ % R " (x) +
(this formula is useful only when his small).

The generalization to two variables:

fx+ by + k) =f(x,y) + (D3 (x,y) + k x, )

g (P BLoy) +2hk 28 (x,y) + K2 S (x, ) )+

where - - - stands for higher-order terms;
(this formula is useful only when both h and k are small).

NOTE: we can write this formula in a more compact way:

f(x+hy+k) = f(x,y) + (h fe(x, y) + k£, (x, y))
+ 4 (h2 foc(X, ¥) + 2 hk oy (X, y) + K2 £y (X, y)> +




Examples:

@ f(x y)=x®siny about the point (1,0).

Find the Taylor series up to quadratic terms for the given
functions.

S:

f=x%siny f(1,0) =12sin0 =0
fx =2x siny f(1,00=0
fy:X2cosy fy(1,0) =1
fix =2 siny fix(1,0) =0
fyy =2x cosy | f,(1,0) =2
fyy = —X%siny fyy(1,0) =0

f1+h0+k) = f(1,0)+(h f.(1,0) +k fy(1,0))
— —— —

=0

+ 2 (h2 fix(1,0) +2 hk £, (1,0) +k2 fyy(1,o)> +..

=0 =2 =0

=0+h-0+k-1+5(PP-0+2hk -2+K2-0) +---

Answer: ‘f(1+h,k):k+2hk+---\
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Q f(x,y) = /x2+ y? about the point (1,2).

S: f(1,2) =v12+28 =3
&:\&%F = K(1,2)=1
fyzzjxyz%s = f,(1,2)=3Z >
fo= b = (1.2)=%
by = sorde = fy(1,2) ==}
fy = 22127 = fy(1,2) =2

1+ h2+k) = 1(1,2)+(h K(1,2) +k f(1,2)
—— -

=3

+ 4 (h2 for(1,2) 42

Neo

=2

W=

[lell\v}

—exercise!

hk fy(1,2) +K2 fyy(1,2)) +
~—— N

wind

=3+h-J+k-2+

e

hk+K2.2) +
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How to use this formula?? —dropping higher-order terms - - -, we get
fl+h2+k ~3+3ih+2k+5 (LM —§hk+2k?)
for small h, k.

E.g.: Toget(1.02,1.97) =f(1+0.02,2—-0.03),

so use h=0.02 and kK = —0.03, which yields | f(1.02,1.97) ~ 2.947159

correct

—very accurate (6 correct decimal places!)

NOTE:
Taylor series give approximations of a function near a certain point:

—The closer the point at which we evaluate f to the point about which
the Taylor series is constructed, the more accurate is the approximation.

—The more terms are used, the more accurate is the approximation
(although more complicated).

—Sometimes, fewer terms in the Taylor series may give a sufficiently
accurate approximation: see the next §27.2...



§27.2 Linear Aproximation

To approximate f near a certain point (x, y), we now drop the

second-order and higher-order terms in its Taylor series
(so take fewer terms than in §27.1):

fix+hy+k)=fxy) +hfxy)+kfx y)

called linear approximation of f at (x, y) (or linearization)
Examples:

@ Using the linearization of f(x, y) = V2x2 + €%y at (2,0),

find an approximate value of f(2.2, —0.2).
S: (i) Construct the linearization: f(2,0) = 3,
fX _ 2x

2y
= i = k(2,0 =3 f=55— = {20 =3

f(2+h0—k)~f(2,0)+ hf(2,0) + kf,(2,0) =3+ % h+ } k.

(i) f(2.2,-02)=f(2+02,0
h

—02)~3+4.02+% (-02)=32.

|

Lecture 27



Remark 1: Change the notationto h = Ax, k= Ay:
fx+Ax,y+Ay)—fxy) = Ax-hix y)+ Ay - fy(x, y)
=Nz

Here we also used the notation: ’ ANz=Ffx+ALx,y+Ay)—fFf(x,y) ‘
—very natural notation for change in z = f(x, y)
that corresponds to change Ax in x and change Ay in y.

Then we get an alternative representation
of our Linear Approximation formula:

Az (X, y) DX+ (X, y) by = & Ax + 8 Ay

= ox

Remark 2:
Similarly, for a function of 3 variables w = f(x, y, z) we have

Aw = f(x,y,2) Ax+ 1 (x,y,2) Ay + f:(x,y,z) Az

where ‘AW =fx+Ax,y+ Ay, z+ Az)—f(x,y,2) ‘
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Lecture 27

Examples:
QIf w= %, find the approximate change in w

if: x increases by 1%; y decreases by 3%; Zz increases by 2%.

S: Note that Ax =0.01x, Ay =—-0.038y, Az=0.02z. (%)

Linear approximation:
2.4
Awr QW Ax+ WAy + Y Nz = 298 Ax+ L Ny — B Nz

Use Ax, Ay, Az from (x):

Aw 2 21 (0.01) +4 X4 (—0.03) -3 X4 (0.02)
\,./ ~ ~—
=W =w

w [2(0.01) (—0.03) — 3(0.02)],

= Aw~w-(-0.16) = 2% ~ —0.16,

w

= \ w decreases by about 16%




§27.3 Applications of Linear Approximations to Error

Analysis (2 Examples)

@ Two sides of a rectangular land are measured to be 150m and
501m. The length measurements were accurate to within 0.5m.
What is the approximate maximum error if the area is calculated
from these measurements?

S: |77 7 x =150+ Ax, y=501+Ay
> //1% =50/ with |Ax| <05 and |Ay| < 0.5,
_ 2S _ oS _
X ~ (50 S V) =Xy = oy =) 5y =X
Linear approximation near (150, 501):
~ 0S8 S
S(x,y) — 8(150,501) ~ §31 150501, 2% + 32| (150,501, LY
AS=77 =501-Ax+150- Ay.

So for the error in the area we get: AS ~ 501 - Ax + 150 - Ay,

IAS| S 501 |Ax|4+150 - [Ay| <501-0.5+150- 0.5 =|325.5 —Answer.

NOTE: the calculated area S(150,501) = 150 - 501 = 75151,
so the error is small relative to the area...




@ The radius r and the height h of a cylinder are measured with a
relative error of +1%. Find the relative error in its volume V = rtr2h.

Remark: If a quantity Q is measured experimentally, then

Abs.Error N Abs.Error

Absolute Error = Queasured — Qexact || R€lativeError = R
Qexact Qmeasured

S: Radius | Height Volume
exact r h V(r,h) =mnr?h
measured r+Ar | h+Ah V(r+ Ar,h+ Ah)
absolute error Ar Ah AV =V(r+Ar,h+ Ah)— V(r, h)
relative error or £h e

We know that || < 0.01 and |4 < 0.01, and need to estimate | 5/ |.

Linear approximation of the function V(r, h) = mr?h:
AV ~ 2nrh -Ar+ mr? -Ah (exercise!) So % =LY ~0~lf Ah
<~ —~— mtréh
=aV/or =dV/dh

= |AY] < 2|20 + |42 < 2.0.01+0.01 =[0.03] or 3%.
NOTE: the volume V is twice as sensitive to error in r than to errors in h.



Lecture 28 The Method of Least Squares

An experiment to relate a quantity y to a quantity x, yields a set of data
points‘ (xj, yj)fori=1,2,.-- ,n\. Suppose, it is suspected that (if the
measurements were perfect, but they never are) these points should
lie on the same straight line y =a x + b:

Qur Task: find the "best” line
for our data set

(or, equivalently, find

the "best” a and b).

For each x;: the difference between the measured y-value y;
and the y-value on the line ax; + b is given by’ lax; + b—yjl ‘

Method of Least Squares

Choose aand b to minimize the sum of the squares
m

S=Y (axi+b-y)® ()

i=1
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To solve this problem: NOTE that here S is a function of two variables
S = S(a, b) (everything else is given data!),
i.e. (%) is a minimization problem, only in 2 variables.

Recall that y = f(x) can have an extreme value at x = xg
only if ¢ dx =0.

X=Xo
Similarly, z = f(x, y) can have an extreme value at (xp, ¥o)
| of _ of _
only if oxl(x0.0) — 0 and 57}/‘()(0,}’0) =0

Apply this to our Minimization Problem (x) by equating gg and %% to 0:

ZZ axi+b—y) x,_2( Zx2+be, Zx, y,)_O
ab—ZZ axi+b—y,) _2< Zx,+bn Zy,)_o

i=1

—i.e. we got 2 equations for a and b, and it remains to solve them.
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—i.e. we got 2 equations for a and b, and it remains to solve them:

ay x’+bYy xi—Y xi-yi=0 (1)
ay xi+bn—3 y;=0 (2)

To solve this system:
multiply (1) by n, then substitute bn obtained from (2):

any xf+ bn ¥ xi—n¥ xi-y =0,
from (2)

any x2+ 1> yi—ay x| (Xx)—nY x;-yi=0.

Finally, for the Least Squares Method we get:
Conyibaxicyi— (Zx) (Xv)
B 2

nZ/n:1Xi2 - <Z/n:1x/> ()

b=1[Y"yi—aYix]

a

NOTE: this method is also called Linear Regression,

while the line y = ax + b is called the Regression Line.

Lecture 28 The Method of Least Squares
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Examples:

@ Find the least squares line for the data set:
(0,2), (1,6), (2,4), (3,8), (4,10).

M n:55 i X; Yi Xi2 Xi Vi

1 0| 2 0 0

2 1 6 1 6

312 |4 4 8

4 | 3| 8 9 | 24

5|4 10| 16 | 40

> |10 30| 30| 78
_n¥xi-yi— (Xx)(XZy) _ (5)(78) —(10)(30) _ 90 _18
ny x2— (¥ x)° (5) (30) — (10)2 50 ’

b=1[Tyi—ay x]=1[30-18-10] =12 =24,
Answer: |y =18x 2.4

Lecture 28 The Method of Least Squares
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© The least squares line for the data set: B
(0,2), (1,3),(2,a),(3,b),(4,7) is y=2+ gx. Find a and b.

Solution: n=5, ;| Vi X2 XiVi
110 2 0 0
2 |1 3 1 3
3|2 a 4 2a
4 | 3 b 9 3b
51 4 7 16 28
S |10 12+2a+b | 30 |31+2a+3b
s nNYXxi-yi— (X x) (Z i) _ (5) (31+2a+3b)—(10) (12+a+D)
5 _ 2
\_2,; ny x2— (¥ x)° (5) (30)—(10)

__ 3545b __ 7+b m
=850 — 10 7

\,;—HZM aZx,]=;[12+a+%) 5.10]

- 10=(12+2+8)—15=5+2 =|a=>5|
5/5



Lecture 29 Introduction to Matrices (revision)
Definition
An m x n matrix is a rectangular array of numbers with m rows and n

columns: ayy aipp a3 - an
ay{ dgp a3 -+ aop

A=

am dme dam3 - d@mn

The generic entry is a; (row / and column j).

1 4
Eg: A= [ 2 5 ] where 4 = ay» and 3 = as;.
ol T ReR A S A Square ik T
@ An 1 x n matrix is a row vector.
E.g., b=[148]isa1 x3row vector.
@ An m x 1 matrix is a column vector.
E.g, x= [_1 ] is a2 x 1 column vector.
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@ Two matrices are called equal if they have the same size and
equal corresponding entries.

Eg, [0 1};&[?}, and [g ;};A[? g}

@ The m x nzero matrix is 000 --- 0
0 00O 0
A= )
, 0 00O 0
Notation: A =0.
mxn
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Matrix Addition

Matrices of the same size may be added: | (A -+ B),.j = aj + by |.

Eq. |[128],[ 11 1]_[234
=0: 14 5 6 11 1|7 |36 5]

Scalar Multiplication

Any n x m matrix may be multiplied by any real k: | (k A),.j =k aj .

es: o[ 25]=[5 3

123+21§ 2 1] [2 65
4 56 0 1 0] |43 6]
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Matrix Multiplication
One can multiply an m x n matrix A by an n x p matrix B:

then ABis an m x p matrix with

(AB); = X k—1 a b |

NOTE: one may expect (A B)I.j = ajb; —WRONG!

[ a;y ae -+ ain |
. . . b11 e b1j
. . . b21 . b2/
a1 &2 - dpn : :
' bnt --- by
L @m @m2 - dmn | [ i1
A B =2C
N~ . c:
mxn nxp mxp - i
where
c
Cij = ait b1j+a,-2b2,-+~--+a,-nbnj | &m1

= the dot-product of row / in A by column jin B.

b‘]p

.. C1j

Cij

Lecture 29 Introduction to Matrices (revision)
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Examples: g; 0 2 4
. — =77
o -1 1 [1 3—2] \C/
4%3 1 9 10
O 2x3 2 6 —4
NG o Answer: C = 1 16

C12:Fl’102:[3 1] §:|:3'2+1~3:9,
ci3=RiC3 = [3 1] _g:|:3-4+1-(—2):10,

021:RQC1: [0 2][?:|—00+21—2

2 4 2 —6 00
o [T2]115]-]0
NOTE: this example shows that AB = 0 does NOT imply that
NOTE also: either A=0o0r B=0.

[24] o .. [24][24] [8 16
A= 2% avsmonac [2 2] [2 4] [5 19)
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Some Rules of Matrix Arithmetic

(kA)B=A(kB) =k (AB)

‘(AB)C:A(BC) \ +(BC)A

(A+B)C=AC+BC, #CA+CB

AB+C)=AB+AC

© ©6 6 0 ©

A+0=A  A+(-A)=0, A-0=0

Remark: ingeneral, |AB# BA
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Matrix Transpose

The transpose of an n x m matrix A is the m x n matrix A” such that
(AT); = aj|

—i.e. the rows of A become columns of AT
(or, equivalently, the columns of A become rows of AT).

14
E.g.: A:“ g g} L AT= |2 5|;
3 6

R
B= o] = BT=[10 2]
2

Properties: |(AT)" =A| |(AB)T =BTAT| |(kA) =kAT
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Identity Matrix /,

is the n x n matrix with 1s on the diagonal and Os elsewhere:

S
0 1 00 1 L
00

o O O
- O O O

NOTE: IfAismx n,then |[bLA=_A =Al,|
<~
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Matrix Inverse

An n x nmatrix B is an inverse for a square n x n matrix A

Def:
if |[AB=BA=1I|

1.2 } then B = { _1 ] is an inverse of A,

Examples: (1) A=
0 i E\B BA 1.0
) A:[; i]has NO inversell since AZ = _[0 1]
Proof: Let B = i Z be an inverse of A.
1.0 | a+2c b+2d
= [ ]AB[23+4C 2b+4d]

0 1
= a+2c=1and2a+4c=0 —impossible = NO inverse! O

ol N

If A has an inverse, it is unique. (without proof)

Notation: A~ " denotes the unique inverse of A; then A is called invertible.
(AB) ' =B 1A || (kA) = 1A (k£0)

979

Properties: | (A1) ' = A
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Lecture 30 Systems of Linear Equations

Matrix Representation

A system of m linear equations in n unknowns:

ai Xy + a2 Xz + -+ @ Xn = b
a1 Xy + 82 Xo + -+ + 2n Xn = b2

am1 X1 + @8mg X2 + -+ + 8mn Xn = bm

—This system may be rewritten as a single matrix equation

A x =_b as follows:
—~ =
mxn nxi mx1
ain a2 as an X1 b
ax dxp a3 ap X2 bo
am dame ams amn Xn bm
—_——
A:mxn X :nx1 b:mx1

Lecture 30 Systems of Linear Equations
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Examples: 4y, 4 2x, = 3 4 277 x 3
° e o0 o]

It is convenient to skip x (as it contains no info) and instead use the
augmented matrix | [A|b] | —Here Ais augmented by b.
Indeed the augmented matrix contains all the given data of the system!

. 4 2|3
So, for our example, we equivalently have 0 111
Q@ Trivial system:

X = 4 100 Xq 4 1 0 04
Xo = 3 = 010 X |=[3|«< |01 0|3
X3 = 2 0 0 1 X3 2 0 0 1|2
~—_——
—/3 X1
X1+Xo+ +X4 = 1 11 0 1 Xo N 1
O wixix = 0 j[o1 11] X3 _[o]
, 11 0 11 X4
or, equivalently, 0 1100
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§30.2 How Many Solutions?

Consider 2 unknowns: x; = x and x> = .

Each equation in the system has the form

—this is an equation of a line on the plane!

Suppose we have 2 equations in 2 unknowns:

\ a1 X+ appy = by ‘ —this is an equation of a line Ly on the plane;

\ a1 X+ amy="bo ‘ —this is an equation of a line L, on the plane.
So, any solution is a point that belongs to both lines;
i.e. any solution is an intersection of the 2 lines!

Hence, we have 3 possibilities:

(a) The lines Ly and L, are not parallel, then they intersect at one point:

Z . ,
91 . / = (consistent system)
— /

X+y=1 has the unigque solution x=1,
x—y=1 y=0.

8 E

’ X
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(b) The lines Ly and L, are parallel, then they do NOT intersect:
= |NO solutions inconsistent system)
L % ] +( cor y
y =
xX+y=2
(c) The lines Ly and L, coincide, the intersection is the entire line:

= (consistent system),

all the points on the line are solutions.

E.g.: the system has no solutions.

Ly’

has co solutions [ X ] .
Xx—1
Consider 3 unknowns: x; = x, xo = y and x3 = Z.
Each equation in the system has the form ] ax+by+cz= d\
—this is an equation of a plane in the space!

Any solution for 3 equations in 3 unknowns is an intersection of the 3
planes: this may be (i) 1 point (so 1 solution); (ii) a line (oo solutions);
(iii) a plane (oo solutions); (iv) NO intersections (NO solutions).

Consider more unknowns (higher dimensions):
one has to resort to algebraic analysis...

Lecture 30 Systems of Linear Equations 4/11




§30.3 Gauss-Jordan Elimination
This method solves any linear system, i.e. (1) detects whether the
system is consistent; (2) if it is, then the method yields ALL solutions.

Elementary Row Operations

(i) Interchange any 2 equations (rows): | R; <+ R;|.
(ii) Multiply any equation (row) by a nonzero constant: |k R; (k #0) |.

(iii) Add a multiple of one equation (row) by any constant to another:
R,' + k R] )

NOTE: here rows refer to rows of the augmented matrix.

If any elementary row operation is applied to the augmented matrix
[A \ b] , the resulting matrix has the same set of solutions.

= OUR PLAN: apply elementary row operations to reduce the
augmented matrix to an equivalent simple form!

Gauss-Jordan Elimination: apply elementary row operations to reduce
the augmented matrix to its | RREF | — Reduced Row Echelon Form.




RREF — Reduced Row Echelon Form

The first nonzero element in each nonzero row is the only nonzero
entry in its column.

o O o
o]

0 1 1
Eg: | 0 (YES); | 0 0 [2] 1
0 0 0

t

0
NOTE: the first nonzero element in a row is called the pivot for that row.

Examples: Find the RREF for each system and hence solve it.

Xi+2X+X3 = 6 [ 2 1 6]

Q 2x —x3 = 1 = Augmented matrix: [ 2 0 —1 |1

—here | 1|is the pivot for row Rj.

—Use elementary row operations to transform the other entries in

column 1 to zeros (i.e. to transform 2 to 0): yields =

Lecture 30 Systems of Linear Equations 6/11



1 2 1| 6

0 -4 -3 11 ] =To simplify calculations: , and also
L O 2] 4 (to use| 1 |instead of —4 as a pivot):
1 2 1|6 ]

0 2| 4 | =Totransform 2 and 4 to zeros, apply
o 4 3] ] ara A
10 3 2]

0 1 2 |4 | =Tosimplify calculations: |—% Rs |:

0 o[ 5] s
T1 0 -3 Lo

0 1 2 |4 | =Totransform —3 and 2 to zeros, apply
"1 0 01 X1 =1

0102 —this is RREF; it yields a trivial system: < xo =2
(00 11 o — 1

Answer: (xq1, X2, X3) = (1, 2, 1).
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00 12
10 1 -1|0 S: Pivot on each row
° 1 2-2 0|2 using elementary row operations.
11 0 02 0O 01 1]2
First, [ Ao — Ry |and [ A + 2 Ry | yield: > o &5 | —done
i 1002 with Row 1.
0O 0 1 1]2
|1 0 0-2}2
Next,| B — Rz |and | Ry — Rz | yield: 0 o 4|8 ;ic:EnRGOWZ
0 1 0 2|4 '
0 0 1 1]2
1 0 0-2F2
. . . 1
To simplify calculations | 5 A3 | = 0 0 2|4
001 1]2 0 1 0 2|4
NI;’W’ 5 1.0 0-2-21 __Here the final row is equivalent to
_ 010 24 0-X14+0-X+0-X3+0-x5 =0,
ylelds: 10 0 0 00 i.e. says NOTHING! = delete it!
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—2
2
1

0
Finally, reorder the rows: 0 —this is RREF!
0 O

N A~

0
0

To complete the solution:

Note that the remaining 3 rows involve the 3 pivots
that correspond to the 3 unknowns xq, x> and xs.

The remaining unknown x, is called a free variable.

Xq —2x4 = —2
Rewrite the RREF as a system: X2 +2x4 = 4
X3 + x4 = 2

Set —any real number.

= Answer: |[(x1, Xp, X3, Xa) = (—2+2, 4 -2, 21, 1), (€R]
(i.e. the system is consistent and we have infinitely many solutions).

NOTE: using the Answer, we can get particular solutions,
eg., t=0= (-2,4,2,0) and t=1= (0,2,1,1).
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Arow|[0 0 0---0|a] |with a# 0, is equivalent to the equation
0-x1+0-x2+0-x3+---+0-x,=2a#0.
So the system is inconsistent (i.e. has NO solutions).

2xi + X = 1 2] 11
Q@ X143 =-7 = 3017 First,
Xy +2x = -3 1 213 (to avoid fractions)

[y

1 -7

37
1 1]. Souse\R22R1\,\R3R1\:>{O 15
213

0-1|4
1 38 7 1.0[2]
—1R|= |0 3 |.Next,[Ri — 3R =0 113
0-1|4 0 0|1

—this is the RREF, in which Row 3 gives: 0-x1 +0- xo

[

= 1N

]
= Answer: the system is inconsistent (i.e. NO solutions).
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For any m x n system, there are 3 possibilities:
(i) a unique solution; (ii) NO solutions; (iii) co solutions.

E.g., it's impossible for a system to have just 2 solutions...

Further Examples:
© x5 +26-3x="5 :,[ 24\5]

The pivot | 1 |is for xq. The remaining x> and xz will be free variables.

Set\xz =8, X3 = t‘:>Answer:‘(x1, Xo, X3)=(5—25+3t, s, 1), s, te]P\"

1 2 3 1][1
Q@ |-1-112[0|= ;»[O_5_5F]
0 1 4 3|1 o [1] 4 31

The 2 pivots are for xq, xo. The remaining xs, x4 are free variables.

Exercise

Set [x3 =1, x4=5|=
Answer:\()q, Xo, X3, X4)=(—1+5t+5s, 1—4t—3s, t, s), t, seR\
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Lecture 31 Inverse of a Square Matrix by the
Gauss-Jordan Elimination

IDEA of the method: to find A~ we need to solve the matrix
equation AX =_ | . Then the solution X = A1,
—~—
identity matrix
X1 X2 Xq3 100
E.g.: fora3x3matrix A: A| Xo1 X2 Xo3 | =| 0 1 0
X31 X32 X33 0 0 1

In fact, this matrix equation is equivalent to 3 systems:

ERHER RN
() Al X1 | = 0 |; (l)) A| X2 | =] 1 |; (i) Al xo3 | =
X31 0 X32 0 X33

For those 3 systems, the augmented matrices are:

1 0
M| A ol; @)yl A 1]; i)l A
0 0

Lecture 31 Inverse of a Square Matrix by the Gauss-Jordan Elimination
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NOTE: If Ais invertible, then (without proof, see further examples) the
RREF for the system [ A | b | (with any right-hand side vector b) has
the form [ /| ¢ | for some vector c. Consequently, the unique solution
of this systemis x; = ¢y, Xo = ¢, X3 = Cs.

Apply this observation to our 3 systems: their RREF will be

X11 X21 X31
() { I ] X2 }; (i) { [ | X22 ]; (iii) { I ] Xa2 }
X13 X23 X33

It is convenient to combine the 3 systems and transform them to the
RREF together as follows:

Computation of A~" (Description of the Method)

@ Form the augmented matrix |[A|/]|.

@ Use the Gauss-Jordan elimination to transform it to the RREF

[ X]]
@ If the reduction can be carried out, then .

Otherwise, A~ does NOT exist.
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Examples:

131 3-1]1 0 0
@A=|-2-5 1| s [Al/]=|2-51010
152 | 1 52|00 1|
1 3 1|1 0 0]

porty [F 127 and [ ] | 0 [1] 1|2 1 o
[0 2 —111 0 1]
1 0 2}5-3 0]

Apply [Ri —3R,|and[Rs —2R;| = | 0 1 =1 |2 1 0
[0 0 [1]F-5-2 1]

10 0|5 1-2

Aoy [F 27| and [y Fe) = | 0 1 013 1 1

(0 0 1152 1

5 1-2

= Answer: |-3 —1 1 |. To check the Answer:
—5-2 1 check that AA~1 — /1
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1 -2 1
Q@ A=|-1 3 2
2 -5 —1
[1]—2 1]1 0 0
S [A/}{1 3 2/0 1 o]
2 510 0 1

1
Apply \R2+R1\and\R3—2R1\ =10
0

]
3
3
1 7 2
Apply [Ri +2R,|and|Rs + Rz| = | O 3L1 1
00 01 1

= Answer: Ais NOT invertible (i.e. A~! does NOT exist).
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0a-[33%]  sran=[} 2l Y]

7] 0]1 -5
Apply | Fi —5 R ;‘ o 1]
Apply [2R;|and[7 R, | : 02—10]

L . 14 710 7
(to avoid fractions) —

—14 0|2 —10
ooty (o] = [0 91270 ]

1 1 10
Apply | -3z Rijand |7 Ra| =

0 1

NN =

—_

Answer: A1 = [ J
7

N Nio
)

§ ]
7
_3
7
Verify: AA~1 = [ 3 5] B

| [-15 9]
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Lecture 32 Determinants §32.1 Definition

Definition by induction

Let Abe an n x n matrix. The determinant of A,
denoted |det A] or [|A||, is the number defined as follows.

n=1: i.e. A= [311}. Then det[aﬁ] = ’311‘ = a1 |.

E.g.: det[5] = |5/ =5, det[-1] =|-1|=—1

(do NOT confuse with the absolute value!)
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a1 axe
do1 o2

2]811 “dop — a2 - dpq |-

a a
n=2: det{ 1 12]:
az1 az

Remark: this definition may be interpreted as

a1 are

= 441 - det|aoo| — a1o - det|a —First-Row Expansion.
a1 a2 B (222] — a2 |21 P
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ay a2 as
n=3 a1 dp a3 | =
ds1 dz2 ds3
—| a do2 dg3 | dgi  dgg dgi Az
dz> dass ds1 ass dz1 ase
—— ——— ——
Ry, Cq deleted in A R;, Co deleted in A Ry, C3 deleted in A
aiq a2 a3
dg2  dzj azq ag3 dg1 a2
dz2 dsj asq ass dsy dsz2

—First-Row Expansion!
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—2
3 4 5 4 5 3
—_—— —
=3-1—4-0 =5-1—4.(-2) =5-0—-3-(—-2)
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=4:

dop dzz azs do1 dg3 ass
ay a2 a3z aws
811+ | d32 d33 d34 |— a2 | a3 dzz a4
o1 B2z f3 A2 A4 A43  Aag as1 a4z dag
a3y dzz a3 ass
a1 Q42 a43 Aaua Ry, Cq deleted Ry, Co deleted
dp1 dgp dzs dp1 dg2 agss
+aiz-| d31 ds2 az4 | —a14-| a31 dz2 ds3
g1 dg2  Aas as1 A4z as3
Ry, C3 deleted Ry, C:Tieleted
—again the First-Row Expansion!
Here we used: [ ay; 1 T a ]
82 83 doa an1 a3 a4
az2 das3 dasa asy az3  ass
L 42 Q43 Aas | | as as3 s |
i ais ] [ ai |
az1  as ao4 ds1 do2 ap3
az1  as2 asa a31 dz2 ass
| 41 a2 sy | | a1 Qa2 au3 ]
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Example:

_11 g g f 2 3 1 -1 3 1
=1/2-10|-2.1-3-10
32-10 -3 -2 1 2 -2 1
2 -3-2 1
=—15 =18
-1 2 1 -1 2
+0--3 2 0|—-2-[-83 2 —1
2 -3 1 2 -3-2
=6

Ex.: Check the 3 x 3 determinants!

—1.(—15)—2-(18)+0—2-(6) =—63. 0O
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Similarly, any n x n determinant
is defined in terms of n determinants (n— 1) x (n—1)

via the First-Row Expansion...
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(Another) EXAMPLE (x):

detA=1-

0 2

—1

1
2 0 -1

3 —1

0 2

—1

1 |=38

2 0 -1
(Ex.: check this)

3 —1
(—2)—1-3=3. O

detA=1-2—-2.(—1)+(=1)-

8/15
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§32.2 Alternative Evaluation

Theorem: det A = "cofactor” expansion along any ROW or COLUMN.

Row r Expansion

(without proof).

detA:_|_ar1.‘...’_arz...}...‘+‘..:|:am"..

detA:_ar1.‘...’+ar2...‘...‘_...iarn’...

if r is odd,

if r is even.

where each a;; is multiplied by the (n— 1) x (n— 1) determinant

(denoted \ -+ |), obtained by deleting row r and column j in the original
matrix A: ) )
ayy a2 - @in
A=| a1 am -+ am
L @i @n2 -+ ann

Lecture 32 Determinants
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Column s Expansion

Foran n x nmatrix A: |det A= ays - Ats + aos - Aps + -+ + ans - Ans|

detA=+ays-|--+|—aps ||+ Lans|-|| ifsisodd,

detA=—ayg-|--+|+ass |- |—Lapns| || ifsiseven.

where each a;g is multiplied by the (n— 1) x (n— 1) determinant

(denoted \ -+ |), obtained by deleting row i and column s in the original
matrix A:
ayy -0 @s A
ant dns ann -
_ - + - +
NOTE the sign pattern: +
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(Earlier) EXAMPLE ():

1 2 -1 1
-1 0 2 -2
A= 3 -1 1 1
2 0-1 2
-1 2 -2 1 -1 1
detA=-2-| 3 1 1 |40||=(=1):|-1 2 -2]+0-| |
2 -1 2 2 -1 2
-1 2 -2 1 -1 1
where| 3 1 1 |=—1(seeearlier); -1 2 —2 | =1 (Ex.II);
2 -1 2 2 -1 2

detA=-2-(—1)+0—(—1)-14+0=3. —same result!

Lecture 32 Determinants 11/15



Another Example:

1237
A=50 15
0 00 3
4 8 1
detA—-2.10 1 5 +o“_o"+o“
0 0 3
SR A .
=2 8;2 —2(4‘03 o+o) 24,

Warning: Watch that each term has the right sign +!!!
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§32.3 Easy Determinants

@ If Ahas a row or column of zero entries, then .

2 3 4
00 = 0.
1 1

E.g.: =0,

o w =
(o2 -\
O O o

0
2

1 -1 1 2 4 6
E.g 2 0 2|=0 |-1-2-3]|=0.
3 1 3 1 -1 2
| | S
C1=Cs Ri=—2R,
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o

If A is:

A=

either lower triangular, i.e.

ai 0 o - 0
a1 a2 0 - 0
aq asp ass - 0
dnt dp2 an3 - @mn

—all entries above the diagonal =0

A=

or upper triangular, i.e.

aiy aiz a3 -+ an |
0 ax a3 - an
0 0 as - azp
0 0 0O - am

—all entries below the diagonal =0

:>\ det A= aq1 - aoo - ass - - - ann = product of the diagonal entries

Lecture 32 Determinants
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1 0O 0 O
2 -1 0 0
11 101 8 5

Proof: Use the first row expansion:

-1 00 i o

> detA=(1)-| 18 1 0|=(1)-(-1) ’ 8 5’ O
101 8 5 =2
S =(1)-(5)

First Row Expansion
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Final Exam

@ Check the MA4002 website at
http://www.staff.ul.ie/natalia/MA4002.html

—NOTE the Important Info file there.

@ General Advice:
2 examples may seem similar (replace 1 by 3...), but solutions
may be quite different. If you target a particular question,

be prepared to solve the entire CLASS of problems!

(not just an example from the last year paper): i.e., be prepared to
different scenarios in the solution process... To prepare for this,
carefully check ALL examples and notes in the relevant lecture...

Thanks for Your Attention & Best of Luck!
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