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@ Your lecturer: Prof. Natalia Kopteva
https://staff.ul.ie/natalia/

— Have been full-time lecturing in Ireland + UK since 2000.

— If you want to chat with me, I'll have office hours every week in
my office B2032, the time slots t.b. confirmed via SULIS

— or you may contact me via email at
natalia.kopteva@ul.ie to ask a question.
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@ 3 live lectures each week (also prerecorded via PANOPTO in
2021)

@ Tutorials: one 2-hour slot per week starting from Week 2

@ Tutorials Sheets: are available via SULIS only.
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@ In addition to MA4002 SULIS website,
there is an open-access MA4002 website:
https://staff.ul.ie/natalia/node/1200
(this link is also given at the SULIS site, or you may Google it;
different from earlier years!!!)

+ Prime Text + past Midterm papers + Final exam papers with
solutions

+ Lecture Notes will also be given at the above website, as well
as will be available via SULIS.

+ a lot more...
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@ COURSE OUTLINE

— See the first SULIS Handout for syllabus details

— One central topic will be

Integration + its Applications
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@ Philosophy:
Education is what remains after one has forgotten what one has
learned in school. Albert Einstein

You'll forget the formulas and recipes. What is worth learning is HOW to
APPROACH a problem. Only then, as an engineer, you'll be able to
solve non-standard and non-trivial problems...

— NOT (not only) memorize a number of formulas,
but UNDERSTAND where these formulas come from...

(Our objectives may be quite different from school maths

— The world is changing very rapidly. In future, you may have to move
to entirely different professions. To be able to compete, one needs to be
able to solve non-standard problems, think outside the box. This comes
from a true understanding of things, as recipes can be implemented by
the machines much more efficiently...

@ Example: We'll study Antiderivatives and Integrals "from scratch” (as if
you didn’t do them at school).

Why? — At school, you studied a bunch of recipes;
we try to understand where they come from...
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@ A bit of ADVICE (more to follow):

— TAKE some NOTES by hand

(during lectures / listening to recordings + preparing for

tutorials/exams)
https://www.bbc.com/future/article/20191122-when-the-best-way-to-take-

notes-is-by-hand

—do ATTEMPT to solve tutorial problems BEFORE reading

provided TUTORIAL solutions (not going to be easy, but VERY

beneficial...)

— ASK QUESTIONS: during | tutorials / office hours, afterwards...

— look for HELP if you find the module difficult (well before the
exams)

— STUDY GROUPS: for many students, it's beneficial to study
maths in groups...

— target to work 8-10 HOURS per week (unless you find the
module easy)
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NEXT:

“FORGET” all you know from school about
Antiderivatives + INTEGRATION

START from SCRATCH

(Why? — At school, you studied a bunch of recipes;
we try to understand where they come from...)
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Lecture 1: §1.1 Antiderivatives

Definition
An antiderivative of a function f on an interval / is a function F that

satisfies | F/(x) = f(x) forall x € |

Examples

@ F(x) = }x?is an antiderivative of f(x) = x since Z($x2) = x.
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Q Flx)= —% cos(4x) is an antiderivative of f(x) = sin(4x)
since d%(—% cos(4X)) =sin(4x).

So is —J cos(4x) + 5 since & (—4 cos(4x) +5) = sin(4x).

Sois —% cos(4x) + C for any real constant C, since

d%(—l cos(4x) + C) =sin(4x).

(NOTE: this shows that antiderivatives are not unique.)

Lecture 1 Antiderivatives and Indefinite Integral 2/11



§1.2 The Indefinite Integral
Let F(x) be any particular antiderivative of f(x).

Then the general antiderivative of f(x) is| F(x) + C

(also called the indefinite integral):

Definition
The indefinite integral of a function f on an interval / is

| f(x) dx = F(x) + C on I|where F’(x) = f(x) for all x € I.

Here:
[ is an integral sign;
C is a constant of integration.

NOTE:
Why the notation [ f(x) dx for the general antiderivative F(x) + C??
see definite integrals...
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Examples

Q@ [xdx=}x2+C since L(3x2) =x.

Q [sin(4x)dx = —% cos(4x) + C since %(—% cos(4x)) =sin(4x).

Q fsec2 xdx =77
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Linearity of Indefinite Integral

J(f(x) 4+ g(x)) dx = [ f(x) dx + [ g(x) dx ;
[ kf(x)dx =k [f(x)dx, where k is a constant.

NOTE:
[f(x)g(x)dx # [ f(x)dx - [ g(x)dx.

Example:
| (3X + sin(4x)) ax = %XQ — %cos(4x) + C.
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§1.3 Indefinite Integrals of Elementary Functions

E.g.

(Xr+1) —

Every differentiation formula has an analogous integration formula

Ko

(r+1) x" implies

[x"dx =1

L x4+ C (where r £ —1)
Example:

J(3f+ )dx_3jx1/2dx+Jx2dx

. 1 3/2 )(_-1
_3<1+;x >+_2+1+C

:2x\/)7—%+0.
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Furthermore, (sinx)’ =cosx implies |[cosxdx =sinx+ C|

Similarly, [sinxdx =—cosx+ C| |[sec?xdx =tanx+ C

More generally, if k # 0, then

cos(kx) dx = Lsin(kx) + C sin(kx) dx = —1 cos(kx) + C
k k

Example:
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Integrals involving e*:

d

Since a(e") = X, so we have ‘fexdx: e +C\

Similarly,

Related results:

Jax ax

e dx=1e”+C (where k #0)|

:Jexlnadx

1

_7exlna+c

Ina

Ina

a+C, wherea>0, a#1

Lecture 1 Antiderivatives and Indefinite Integral
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Further related results:

Jcoshxdx :J;(e" +e %) dx

_1
_é(e“r

[annx 0.

Similarly, Jsinh xdx =coshx+ C|
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Integral leading to In|x:

Whatis [ } dx = [ x~'dx?? (Note: We cannot use the power rule!)

. 1
Forx > 0:we have x| =xso Lin|x|=ZInx=1
For x < 0: we have |x| = —x so

1 1 1

Linlxl=Zin(—x) =1 (—x)' =L (1) =1.

Combining the above observations, for all x # 0: d% In|x| = } S0

Jldx:lnerC (where x £ 0) |.
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Example:

(" ]
4
JX +1dX:J(Xs—{—1)dX:1X4—|—|n|X|—|—C.

X X
(2]

4 3

Jx —2x +5de:??
3
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Lecture 2 Areas as Limits of Sums. §2.0 Some Sums

Z1_1+1+ +1=
H—/
ntimes
n
1
Zi:1+2+3+~-+n:n(n?jr )

i=1

iiz_12+22+32+.__+n2_’7(’7+1)(2n+1)
, 6

n 2 2
nc(n+1
Also §i3:13+23+33+~-+n3:%

i=1
Proof: by induction...

rm—

n
Nso 3 r'=ttrertriy gl =2

i=1

Lecture 2 Areas as Limits of Sums 1/11
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§2.1 Basic Area Problem

Find the area A bounded by

y=1f(x)>0, y=0, x=a and x =b (where a< b):

24
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Sollution:
@ Introduce a partition P ={xo, X1, X2, , Xn }

wherea=xg < X4 < Xo <:-- < Xp=b:

e
e o e = T
A=y &5 2K %y Kn=6
Here:

[Xi_1, X;] is the i-th subinterval,
AX; = Xj — Xj_4 is the j-th width.
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Foreachi=1,2,---,n,
construct a rectangle with base Ax; and height f(x;):

SN\

77& 777
A )
o dxd AXL‘X‘- X:(nxm— £
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@ Foreachi=1,2,---,n,
construct a rectangle with base Ax; and height f(x;):

%7
= Z}:l

Koy Xn=6

The sum of the areas of the rectangles is

n
Sn=f(x1) - Oxy + f(Xp) - Axp + -+ + f(xn) - Axp = D f(X)) - Ax

i=1

is called a (right) Riemann Sum for f(x) on [a, b].

@ As n — oo and Ax; — 0, the rectangles get thinner so
‘ Sn — A = (the true area) |, or nle Sn = A.
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@ NOTE one particular case: if all rectangles have equal width Ax

a a+aX arddX A+AX a+nAXx
—t— | F— | f }
a:Xo X{ Xi Xz. /'\',L:: g
Then|x;=a+i-Ax|,
sob=a+n-Ax and Ax:b;a
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§2.2 Examples

Example A

Find the area of the trapezoid

formed by
y=x+1, y=0,
x=0, x=2:

@ Divide [0, 2] into n equally spaced subintervals of width

rx=2"9_2]
n n

@ The partitionis x; =0+i- Ax s0 |x; =

2i

—, =0,1,---,n|
n

o
So f(x,-):1+x,-:1+;l.

Lecture 2 Areas as Limits of Sums
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2i 2
@ Each rectangle has area: f(x;) - Ax; = (1 + F) . <E>

@ Total area of all nrectangles:

~n .
s [ (1+2)]- )
Iy q142v .2
_-;“rnél] n
+g_n(n+1
2

J
:[2n+1]% 2[2+

2
n

D\I\)

| =

51—

Now, we have A= lim S,= lim (4+ =) =4. O
n—o0 n—oo n
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Example B

Find the area of the region
bounded by

y=x% y=0,

x =0, x=b(withb>0):

e Divide [0, b] into n equal subintervals of width | Ax = 2-0 = b}

@ The partitionis x; =0+i-Ax=2,i=0,1,--- ,n.
So f(x)=x%= ’2,7—22.
@ Total area of all nrectangles:

n n n
s,,:Zf(X,.).AX,:Z<i2ng> : (%) — 5y P

i=1 = i=1

=g A _ g 114 ) (24 )

Now, we have A= lim S,,:%3-1(1+0)(2+0):%3_ O
n—oo
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Area = |im Sh
n— oo ~~—

Riemann Sum

Preliminary
lim Sn
n— oo N~

Riemann Sum

— is called the definite integral of f(x) over (a, b);

b b
—is denotedJ f(x) dx = J f(x)dx = lim S
a a n—)ooR. \,-/S

(t.b. discussed in Lecture 4...)

b
COMPARISON implies: Area = lim S = J f(x) dx
n— o0 ~— a
Riemann Sum
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Example C [useful for the Mid-Term!]

n -

n—i

Interpret S, = Z (7) as a sum of areas of rectangles, and hence
=1

=
evaluate L = Iim S,.
n—oo

@ Note that 25/ = 2=/ . 1 — (1 - 1). 15

@ Imagine nrectangles, each of width A on[0,1].

@ Thenx;=0+i Ax =1

@ So ”n—; (1—x) - Ax = f(x;) - Ax if we choose f(x) =1 — x.

n B
_ n—i o
80 Lo fin [S("50)] = fin 3 s
= area under the curve y =1 — x on [O 1]:
= L:§(1)(1):§
(= area of a triangle with base = 1 and height = 1) O
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Lecture 3: §3.1 Partitions and Riemann Sums

@ Recall a partition P ={ Xo, X1, X2, -+, Xn } With Ax; = x; — Xj_1.

@ Define | AXmax = 1mzax AXx; | = the width of the widest interval.
=1,2,---,n

@ Lecture2: Foreachi=1,2,---,n,

construct a rectangle with base Ax; and height f(x;):

F—~—— ==
4%,
Xy Xn=6

The sum of the areas of the rectangles is a right Riemann Sum

n
Sn=1f(x1)- Axt +f(x) - Axp + -+ f(xn) - Axp = ) f(x)) - Axg
i=1




CONCLUSION from Lecture 2

Area = |im Sh
n— oo ~~—

Riemann Sum

"Practical”
lim Sn
n— oo N~

Riemann Sum

— is called the definite integral of f(x) over (a, b);

b b
—is denotedJ f(x) dx = J f(x)dx = lim S
a a n—)ooR. \,-/S

(t.b. discussed in Lecture 4...)

b
COMPARISON implies: Area = lim S = J f(x) dx
n— o0 ~— a
Riemann Sum




@ Lecture 2: recall that we used

n
right Riemann sums: S, = f(x) - Ax;

i=1

(called right since f(x) is evaluated
at the right-most point x; in [x;_1, Xx;])

n
o Similarly (left)S, = > f(xi_1) - Ax;
i=1

is called a left Riemann sum

(since f(x) is evaluated
at the left-most point x;_1 in [x;_1, x;])

3/22



Example A:

(i) Evaluate (left)S,, and (right)S,, for f(x) = x? on [0, d] (where d > 0),
with partition P of n equally spaced subintervals.

(i) Hence check that lim (left)S, = lim (right)S, = Area.
n—oo n—oo

M We have AX = %, Xi = % from )("L,;(, X
O
vl
Note: X
f(xi_1)  Ax = (x_1)%- ¢
Xe~ Xt'/

n

= (lef)Sp =Y f(xi1)-Lx =Y (x.1)2- 2

i=1 i=1



n

= (left)Sp = Y f(xi1)-Lx =Y (x-1)2- 2

i=1 =1
o 3 3n71
_Z ,71 2d . _d (02+12+--'+(n*1)2)=‘,§32j2
j=1
_ dj[n—ﬂ([n—ﬂ 1)(2[n—1]4+1) _ @8 [n—11(n)(2n—1) __ d3(1 EENTE
o 6 - 6 -3 n 2n/-
1 1y _ d®
= nI|_>moo(Ieft)S,,_ I|_>mOO 3 (1 Sl —5) =5

Similarly (see Lecture 2, p.9): (right)S, =
n n
> fx)-ox =3 (BF) - 8= (14 D1+ 55).
i=1 -

= lim (right)S, = I|m L (4 + 1+ L) = a?

n—oo 3 n

Finally, Area = nlim (left)S, = nli_)m (right)S, = ‘f; we are DONE.
— 00 o
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@ Lower/Upper Riemann Sums:

Let f(x) be continuous on [x;_1, Xx;.Then by the Max/Min Theorem,
\3 I, uj € [xi_1,x] such that f(/;) < f(x) < f(u;) forall x € [xj_1, X

e 4=9x)

X('-/ le Z’- XL‘

[3

X

fh)-Axp <f(x)-Axi< fHuy) - Ax

— ——
area of the lowest area of the upper-
rectangle most rectangle



@ Lower/Upper Riemann Sums (continued):

e

g =Fk)

K-t ﬂ% fz X¢

Definition

The Lower Riemann Sum for f(x) and a partition P is

n
La(f, P) = f(h) - Oxy + f(k) - Ao + -+ F(ly) - Axp = Y () - Ax;
i=1

The Upper Riemann Sum for f(x) and a partition P is

n
Un(f, P) = f(u) - Axy + F(Up) - Axp + -+ + F(Un) - Axa = D F(uy) - Ax;

i=1

v
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Example A’ (related to Example A):

(i) Evaluate L,(f, P) and U,(f, P) for f(x) = x? on [0, d] (where d > 0),
with partition P of n equally spaced subintervals.

(i) Hence check that lim L, = lim U, = Area.
n—oo n—oo

Solution:

Note: f(x) = x2 is increasing ;(Z-
on each [x;_1, X,

SO /i = Xji_1, Uj = X;

)(o X] XA.
X

Xt'-\’ Xt'—-' where 9 %
n n
= Lp= Z f(l) - Ax = Z f(xi_1) - Ax = (left) Sy

:>U,,_qu, Ax_fo, = (right) Sy,



Using Example A:

im Ly = lim (left)S, = lim LH-Hn- =42

n—oo n—oo

and

lim Up= lim (right}Sy = lim $-(1+ 1)1 +7) =%

n—oo

Finally, Area= lim L,= lim U,=%; we are DONE.
n—oo n—oo



@ General Riemann Sums:
Choose a point ¢; in [x;_1, X;] randomly,and construct the
rectangle with base Ax;, height f(c;), and area f(c;) - Ax;:

Xo X e o a6

a_f_cﬂ’— G, [ Z 2 = / : / # = fé()
/,(// DC(C:')
X[—( Czi kc' ”
Definition

The General Riemann Sum for f(x) and any partition P:

Ra(f, P,c) = f(c1) - Axy + f(Co) - Axp -+ f(Cn) - Axn = ) f(c)) - Ax;

i=1

v




Three further Remarks:

@ Lower/Upper Riemann sums are particular cases of general
Riemann sums R, (f, P, ¢) with ¢; = I; and ¢; = u;, respectively.

@ Left/Right Riemann sums are particular cases of general Riemann
sums Ry(f, P, ¢) with ¢; = x;_1 and ¢; = x;, respectively.

@ All Riemann sums lie between L,(f, P) and U,(f, P):
|Ln(f. P) < Ralf, P.c) < Up(1, P)|

since f(l;) - Ax; < f(c) - Ax; < f(up) - Ax

(the asserted remark is obtained by an application of _7 , to the
above double inequality...)



—For this area problem with f(x) > 0, we have

Area = lim Ry(f, P, c) for ANY type of Riemann sums!

n—oo




§3.2 The Definite Integral — Informal Definition

"Practical”

n
lim R = lim ) f(c)- Ax
n— oo —~— n—ro0 4
ANY Riemann Sum

(provided this /im is the same for any Riemann Sum...)
— is called the definite integral of f(x) on (a, b);

b b
—is denotedJ f(x) dx = J f(x)dx = lim R
a a n— o0 N~~~
ANY Riemann Sum

Here the notation ja X) dx replaces Z, 1 f(ci) Ax;:
| is anintegral sign (replaces )");
a, b are limits of integration (replace i =1 and i = n);

dx is the differential of x (replaces AX;).



Compare:

a

b n
@ Definite Integral: J f(x)dx = lim > f(c;) - Ax; |is a number;
n—oo i1

b b

f(x)dx = J f(t) dt.

here x is a dummy variable: J
a

a

@ Indefinite Integral: Jf(x) dx=F(x)+C is a function of x.




COMPARISON implies:

Area = lim S = Jf(x)dx & f(x) >0
n— o0 ~~—— a
ANY Riemann Sum
2\

a 4 X

NOTE: If f(x) > 0is NOT satisfied, the above is NOT TRUE
(see next page...)
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Remark: if f(x) changes sign, then
n

Rn(f,P,c) = Z f(ci) -Ax; is asum of signed areas of rectangles:

may be
<0

Wi
SN S
i R S
RS

J((C) >0 i JC(Q) = 7 ‘ i f(c‘-)>0
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§3.2* The Definite Integral — FORMAL Definition

Formal Definition, which works for ALL functions:

Definition:
Suppose there is a unique number / such that for every partition P of
[a, bl we have | L,(f, P) < | < Un(f, P)|

Then we say that f is integrable on [a, b], and call / the definite integral

of f on [a, bl: |/ = 2 f(x) dx |

NOTE: —If the function f is integrable,
then Formal and Informal Definitions give the same answer

(this is discussed in §3.3).

—The Informal Definition does NOT work, if the function f is NOT

(see the final example of this Lecture 3). integrable



Example A**: Show that f = x? is integrable on [0, d] (where d > 0)
d

and evaluate J x2 dx.
0

Solution: Recall that in §3.1 for this function we obtained
Ln(f, P) = d3(1 -H -4
Un(f,P) = L(1+ 11 + L)

n

Now, Ln(f,P)< 4 < Un(f,P) forall n;
and lim Lo(f,P) =< = lim Un(f, P).
n—oo

n—oo
Consequently,
l_ ° is the unique number between all L,(f, P) and all Up(f, P),
d
SO x2 is integrable and J x2 dx = ; O
0



§3.3 Informal Definition works for Integrable Functions

Proof***: A general Riemann sum R;(f, P, c) E f(ci) - Ax;
fi
Salsties | ¢ p) < Ry(f. P.c) < Un(F.P) (sed83.1).

@ For f(x) integrable on [a, b]:

let n — oco,and also let AXpax = 1mzax Ax; — 0.
i=1,2,---,n

Then L,(f, P) and U,(f, P) converge to each other and to the
integral /:
lim Ly(f,P)=1= ||m Un(f, P).

n—oo

Hence, by the Squeeze Theorem,

n b
lim Ry(f,P,c) = nimw; f(c) - Ax; = J f(x) dx
|=

a

n
(as Ry(f,P,c) = Z f(ci) - Ax; remains between L,(f, P) and U,(f, P)).
i=1



@ Some good news: there are quite many integrable functions...

If f(x) is continuous on [a, b], then f(x) is integrable on [a, b].




@ Example: [Mid-Term] Write as a definite integral the quantity

n

. in1/3

L= lim » 127(1+2n’) :
=

Solution: Let Ax=1, [ab]=1[01], x =1L

1
Then L= lim Y (1+2)"°. Ax :J (1+2x)"3dx. 0

n—oo n 0

i=1

Right R. Sum

NOTE: At the Mid-Term, you'll have to also evaluate the resulting
integral using any technique of integration that we learn by then....



Example***: a function NOT integrable on [0, 1]:

1, if x is rational
(i.e., x is a terminating or repeating decimal,
f(x) = such as 0.9 or 0.31)
0, if x is irrational,

_ 1 1
(e.9.,, x = 75 )

Note that forthis function:
f(0.1) = £(0.3) = f(0.9) = 1, while f(%) =f(1l)=o0.

= for any partition P of [0, 1], each [x;_1, x;] includes rational and
irrational points = ‘f(/,-) =0 ‘ and ‘ flu) =1 ‘

Zf Ax;=0, Uy(f,P)= qu, X = ZAX,—1

= between Ln(f P)=0and U,(f,P) = 1 there are many numbers
e.g., 0.5, 0.7,... —i.e. the number is not unique.
= this function f is NOT integrable. O




Lecture 4: §4.1 Properties of the Definite Integral

Recall (from §3.3): if f(x) is integrable on [a, b], then

b n
L f(x) dx) = nli_)mOO; f(c) - Ax;
=
T.b. discussed in more detail!
ol A s T (Whenever n — oo,
altit=
g B & & let max Ax; — 0.)
i=1,2,---,n

Case (i) If f(x) = 0forall x € [a, b, then (Lecture 2)

b
J f(x)dx = A|=the area

a

boundedby y =f(x), y=0, x=a, x=>b. "’




Recall (from §3.3): if f(x) is integrable on [a, b], then

b n
J f(x) dx) = lim Y f(c;)- Ax;
a n—oo i1
T.b. discussed in more detail!
ol (K e e X (Whenever n — oo,
e e 5 @ let max Ax; —0.)

i=1.2,---,n

Case (ii) If f(x) < Oforall x € [a, b],
then f(c;) - Ax; <0,

and Jb fx)dx =—A - ’
] //// /

where A is the area: /
/--Z},/ = f(x)

4

)_X




Recall (from §3.3): if f(x) is integrable on [a, b], then

b n
J f(x) dx) = lim Y f(c;)- Ax;
a n— o0 i1
T.b. discussed in more detail!
S e R (Whenever n — oo,
citstate b bttt b
G sl e B let max Ax;— 0.)
=1,2,---,n

Case (iii) If f(x) changes sign:

m /Aﬂr Recall that "7, f(c;) - Ax; is
77 l V4
i/ 7

/A / ‘ 4 the sum of S|gned areas of rectangles.
/// f( b
k)
- Hence J F(x) dx = Ay — Ap + Aq
a
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§4.1.1 Additivity

Particular Cases:

b
@ Setc=b. Then Jf(x)dx:o.

@ Setc=a. Thenja )ax + [pf(x)dx = [5f(x

So J: f(x)dx = E f(x)dx|.

x = 0.

4/12



§4.1.2 Linearity

Jb(Af(x) +Bg(x))dx = AJ

a a

§4.1.3 Inequalities

o |If f(x) < g(x) forall x € [a, b], then J

a

(here a < b).

@ Triangle Inequality

b b
J £(x) dx‘ < J If(x)|dx| (where a < b).

a a

n n
This follows from ] > fla) - Ax| < Y |fle)]-Lx.

i=1 i=1




§4.1.4 Even/Odd Functions
@ f(x)isevenon [-b, bl if| f(—x) = f(x) |for all x € [—b, b].

b
/4, 2/42 J_bf(X) ax = Ay + A =2A, =

@ f(x)is odd on [—b, b] if\f(—x) = —f(x) \for all x € [—b, b].

7
o /At

//%'// 4 = J f(X)dX: —A1+A2
/é

a
@ Examples: J sin(kx) dx = 0;
—a

SN

5 7T
J x2sin x dx = 0; J x2"1 dx =0 (n > 0 is integer).
-5

—7T
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§4.2 Average Value of a Function

Definition

If f(x) is integrable on [a, b], then
the average value or mean value of f on [a, b] is

_ g
f:ra Jaf(x)dx .




Hint (motivation for this definition):

Define the partition:

ax

bt + ¥ t T

BN %=¢ " wWithx,=a+i-Axand Ax = b=2
/ n

Then one can interpret f as

= im, ; = Jim 5 3 1x)
=
n b
AX 1
since Y 1, f(x;_1) - Ax is a left Riemann sum. O



Example: Consider f(x) =2x on [1,5].

The average value

Triangle: Ay = } -4 -8 = 16;
Rectangle: Ao =4-2 =8.

= f=1(16+8)=6 O



Mean-Value Theorem for Integrals

If f(x) is continuous on [a, b], then 3 ¢ € [a, b] such that | f(c) = f|.

Example: Driving from Limerick to Cork, at some time during the trip
you are traveling at your average speed.

Theorem Proof: By the Max/Min Theorem,
min f(x) =m < f(x) < M= max f(x).
x€la,b]

x€la,b]
b b b Wote:
Hence, J max < J f(x)dx < J M dx J —m
Ja s la 2,
=m(b—a) =M(b—a) —was used here.

Now, m < f < M.

Finally, by the Intermediate Value Theorem,
there exists ¢ € [a, b] such that f(c) = f. O
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§4.3 Definite Integrals of Piecewise Continuous
Functions

Definition

Leta=cy < ¢y <--- < cp=bbe aset of points on [a, b].
Suppose f(x) is continuous on each open interval (c;_1, ¢;):

‘ 5@// 0
Ao s

Then f(x) is called piecewise continuous on [a, b] and
b

J:f(x) dx = E F(x) dx + chf(x) x4+ J F(x) dx

Cy

Cn—1

Lecture 4
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V1—x2 for 0<x<1,
2 for 1 <x<2,
x—2 for 2<x<3.

o7
2
a/},Aj/ik
e x
3 3
J JﬂderJde—i—J(X—Z)dx
0 2
=A+A+A;s
=Im-12+2.14+%-1-1
5



Lecture 5 The Fundamental Theorem of Calculus:
§5.1 Statement of the Theorem

Theorem, Part |

Let f(x) be continuous on an interval / containing the point a. Define

F(x) :J f(t) dt| Then F(x) is differentiable on / and %F(x) = f(x) |

b
f(x) (i.e. G'(x) = f(x)). Then J f(x) dx = G(x) - G(b) — G(a) |

a

Notation: Here we used new notation:
2

b b
G(x)| = Glb) - Gla); F(x)|_ = F(b) - Fla); e.g. x2| =22 —12 =3,

Lecture 5 The Fundamental Theorem of Calculus 1/12



§5.2 Proof of the Fundamental Theorem of Calculus

Theorem, Part |

Let f(x) be continuous on an interval / containing the point a. Define

X
F(x) —J f(t) dt| Then F(x) is differentiable on / and %F(x) = f(x)|

a

Proof of Part I: Recall that F(x) — lim © > ") = FX),
h—0 h

X+h X X+h
HereF(x+h)—F(x):J f(t)dt—J f(t)dt:J f(t)dt=h-f(c)

a a X

(by the Mean Value Theorem for integrals; §4.2, p. 10),

where ¢ € [x, x + h] (and ¢ depends on h).

Now, let h — 0, then F’(x) = lim h';(c) = lim f(c) = f(x). O
— —
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Theorem, Part Il
Let f(x) be continuous on / = [a, b], and G(x) be any antiderivative of

b
f(x) (i.e. G'(x) = f(x)). Then J f(x) dx = G(x) - G(b) — G(a) |

a a

Proof of Part Il:

X

Use F(x) = J f(t) dt from Part |, for which we already proved that

a

F(x) is a particular antiderivative of f(x).
= Gx)=Fx)+C
= Gla=F@a@a+Cc=¢C, G(b) = F(b)+ C.

b b

f(x)dx = J f(t)dt = F(b) = G(b) — C = G(b) — G(a). O

a

Now, J

a

Lecture 5 The Fundamental Theorem of Calculus 3/12



§5.3 Examples for Part Il

NOTE: Part |l related Definite and Indefinite Integrals:

b b
J f(x) dx :( Jf(x) dx )
a a
—— ——
definite: indefinite:
a number a function

Example 1: Find the area between y =sinxand y =0for0 < x < .

l’"— o Solution:
7 7T
AJ sinxdx = ( —cosx )‘
0 ~~———"10

T S >
4 antiderivative
of sin x

=(—cosm) —(—cos0)=1—(—1)=2. O



Lecture 5 The Fundamental Theorem of Calculus

Example 2: Find the area bounded by y = 2> and y = 1.
S: Intersections:
2r=1e5=x*+1ox=142

2

2
A= J (Upper — Lower) dx = J (225 —1) dx
2 2

2

= ( 5tan 'x — X )‘
—~ /=2
antiderivative  antiderivative
of% of 1

= (5tan"'2—2) — (5tan"(—2) — (—2)) = 10tan" ' 2—4 ~ 7.071. O

5/12



Example 3: Find the average value of y = e * + cosx on [0, 7.

Solution:
- b Z
f=5 L f(x)dx = %10 J:(e_x + cos x) dx
, ) . 3
=2( —e* + sinx ) .

antiderivative antiderivative
of e ¥ of cos x

= %((—e‘g +sinZ) — (—e % +sin 0))

Al

Lecture 5 The Fundamental Theorem of Calculus

(—e ™2 4+1)—(—1+0)) = 2(2—e 2.
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Example 4: Be careful when integrating near infinities!

Using Part II:

1 1
1 __1 1,1 __
J1x2dx_ x| =1t =2

But the area has to be positive???

NOTE: .5 is not continuous on [—1, 1] as Iim0 % = oo S0 the above
X—
approach to evaluate the area doesn’t give a correct answer...

)
INSTEAD, try J % dx =—1
So the area in this example is infinite!

14+ 400 ase— 0%

EX: apply a similar approach to evaluate fo 1 dx =

Lecture 5 The Fundamental Theorem of Calculus 7/12



§5.4 Part |: Extensions and Examples

X
@ Part|says: < | f(t)dt = f(x).
ax

a

u(x)
@ Generalize for y :J f(t) dt:

a

Use the Chain Rule: let y = y(u(x)), then % =

Lecture 5 The Fundamental Theorem of Calculus 8/12



Example 1:

——
to apply Part |

Lecture 5 The Fundamental Theorem of Calculus
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Example 2: G(x) = x2 J et dt.
—4
By the Product Rule:
5x 5x
d _ . —12 2 i —2
ax G(x) = 2x J4e at+ x ox J4e at
5x
—2x J e dt+x?. e i(5x)
4 ax
5x ) »
= 2x J e U dt+5x%. e 2%, O
—4

Lecture 5 The Fundamental Theorem of Calculus 10/12



Example 3:

XS 2 0 2 XS 2
H(x):J e ldt = J e ! dt+J et dt
d Trick " 0
——[Cefat+ [Letdt
e (x2) e () = —2x. e 132 e . [

Lecture 5 The Fundamental Theorem of Calculus 11/12



§5.5 Evaluation of Riemann Sums

n
Now we can evaluate |im Z f(c;) - Ax; using antiderivatives!
n—c0 4

[Riemann Sum || Definite Integral | —» [Antiderivative
Part Il

Example (Mid-Term): Evaluate L= lim 1 > cos(%%).

n—oo

S: The sum involves cos x at the right endpoints of the partition:
0, 35, 225, -~ ; ng of [0, Z].
For this partition, Ax = £ = 1 = 28X . JT

T

= L= nIme 20X Zcos Xj) = g lim gcos(xj) - AX

n—oo

/2

. /2
o “cosxdx = ; sin X‘

:%(sin%—sinO) :%(1 —0) :%.
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Lecture 6: §6.1 Integration by Substitution

Recall the Chain Rule:  Zf(g(x)) = f'(g(x)) - g’ (x).

This implies: | [/ (g(x)) - g'(x) dx = [ Lf(g(x)) dx = f(g(x)) + C

To apply this method:
@ Identify a good u = g(x)

@ Construct | % - dx = du

@ Write the remainder of the integrand in terms v only
(No x is allowed!)

@ Now [ f'(u) . dx = Jf’(u) du =f(u)+C

H_/

NO x here!
@ Finally, use u = g(x) to get the answer f(g(x)) + C in terms of the
original variable x. O



Examples:
X
® J e i
NOTE: x-dx=3(x?)"dx=3(x®+1)"dx.

S: Useu=x?+1 with du=2xdx

A . 11
dx = 5du; while 7 = U

1 1
Now,dex:1JdU:In|u|+C: hx2+1)+C. O
X2 +1 u 2

2



Examples:
o) szxlx) dx (where x > 0)

Use u=3Inx, thendu= 2 dx,so
~~
du
dx

fsinu-@:1(—cosu)—{—C:—%cos(SInX)—i—C. O



Examples:

Q [eXV1+eXdx

S: Useu=1+¢ thendu= e dx,so
=~

(1+e¥)’

JVi+e(eXdx) = [Vudu=2u¥2+C=2(1+e)*?+C. O



§6.2 Substitution in Definite Integrals

Similarly,

where A= g(a) and B = g(b).



8
/:JCOS VXHT

o Vx-+1

Example 1:

Method I: First do the Indefinite Integral.

8
ax
Note: l:J cosvx+1- ,
0 vXx+1

1 dx.

xX+1

souse u=+/x+1 with du=(Vx+1) dx=

N|—=

We now have: [cosu-2du =2sinu+ C =2sinyV/x+1+C

—done with the indefinite integral!

8
So I:25in\/X+10:2sin3—25in1. O



(Same) Example 1, Method II:

same substitution, but change limits in the Definite Integral!

2cosudu,

/_Jscos\/mdx_ JX_B
o Vx+1 X=0

but this integral is in terms of u, so need limits of integration for u:

u=+v1+x
so x=0givesu=+v1+0=1, and x=8¢givesu=+v1+8=3.

u=3 u=3

Now /:J 2cosudu =2sinu =2sin3—2sin1. O

u=1 u=T



7 2
Example 2: I:J (2+sin(§)) -cos(3) - dx.
- 0

S: Use u=2+sin(%)

/

so du= <2+sin(§)) ax = % cos(%) - ax.

Limits: x=0 = u=2+sin0=2, x=7 = u=2+sin7 =3.

u=3 u=3
Now, I:J v 2du = 2u°

=56 -2) =% 0
u=2

3 -

u=2



§6.3 Trigonometric Integrals

(i) Jtanxdxlnlsecxl—l—C; (ii) J'cothXInlsinX—&—C;

(iii)* Jsecxdx— In|secx +tan x|+ C.

Ccos X

Proof (i): [tanxdx = [ SnX gx
SO substitute U = cosx with du = (cos x)’ dx = — sin x dx.

Now we get:
f%(—du) = —In|ul+C = —In|cosx|+C = In’COLXH—C: In|sec x|+ C.
O

Proof (ii): Similar, only use cot x = X and u = sin x... (exercise!)

sin X

Proof (iii): More complicated, will be given later...



§6.3.2 Integrals of Powers of cos and sin

) . K
Q | [sin”x-cos®tTx.dx|= |sinx- (coszx) - cos X - dx
~— —_—
1—sin®x (sinx)’-dx

= Jsin”x- (1 sinzx)k - (sinx)’ - dx = Ju”(1 — u?)*du, where u = sin x.

Q JsinZkHX - cos” x - dx —similarly, but use sin®x = 1 — cos?x and

U=cosx Withdu=—sinxdx = l:—Ju”H—uZ)"du...

Q Jsinzkx-cosznx-dx S: use double angle identities:

sin® x = %(1 —cos(2x)), cos? X = %(1 +cos(2x)) :




Example (third type):

[sin* x dx = f(sin2 X)de = f%(1 — cos(2x))2dx

=1 J(1 —2cos(2x) + cos?2x)) dx

X % n(2x) + —j%(1+cos(4x))d

-N><
-M

sin(2x) + g (X + 5 sin(4x)) + C. a



§6.3.3 Inverse Trigonometric Integrals

d o —1(x\ _ 1
Recall that g sin™'(%) = o=
d e 1(x) _ _ —1
and g cos (%) = o= (a>0)
d —1(xy _ __a
and also & tan (%) = 2

Hence, J s =sin (%) + C=—cos (%) + C'| (witha>0)




Examples:

_ t
° /—JWC”’

S: Use u =t with du=(t?) dt =2tdt.




Examples:

Q /=] %
Note: x% +4x +5 = (x+2)% +1.
= u=x+2, du=dx, xX°+4x+5=u+1,

| = =tan 'u+C=tan'(x+2)+C. O

u2+1



Lecture 7 §7.1 Areas of Plane Regions

b

b
f(x) dx is a signed area: J f(x)dx = Ay — Ao + As.

a

Recall that J

a

b
The actual areais A1 + A + A3 = J If(x)] dx

_ ch(x) ax — de(x) dx + be(x) ax.

a c d



Example: Find the area bounded by y = cosx, y =0, x =0, x = 3L,

s 3t 3

2 2 .|z )
A:J costX—J costX:szO—sz
0

g
= (sinZ —sin0) — (sin3Z —sinZ)=(1-0)—(—1—-1)=1+2=3
2 2 2

—both terms 1 and 2 are areas, so both are positive. O



§7.2 Area between Two Curves

Problem: Find the area bounded by y = g(x), y =f(x), x=a, x=>b.

b b
A= J (9(x) —f(x)) dx = J (upper — lower) dx

a




2602 f00 260 = £(&) (i) Generalcase: = A=A +A;

48



Example 1:
Find the area between the curves y = x° —2x and y =4 — x°.

(=43

. - Intersections: x2 —2x = 4 — x?
”V\/LU\/M) = 2x2 _2x—4=0
Y=xeia = x2—x—-2=0 =x=-1,2

2
Area: A :J (upper — lower) dx

2
= J ((4 —x?) — (x*—2x)) dx
1

2 2 x3 X2 2
:J_1(4—2x +2x) dx = (4x—2§+27)

=(4.2-22842%) —(—4—2+1)=09.
(Note that A is positive!) O



Example 2: Find the total area between the curves
y =sinx and y = cos x from x = 0 to x = 2.

——

( Intersections:

{ o =TT _ b7
X = 7 OrX=",.

27T
A :J ‘cosx—sinx‘ ax

5n
4

27T
(sin X — cos x) dx + J (cos x —sin x) dx

5m
4

%
:J (cos x —sinx) dX+J

jud
4

:E)Z(\@—1)+(\/§+\@)+(1+\@):4\@.
X.

(Note that each of the 3 terms is positive!) O



§7.3 Area for Curves of Type x = f(y)
Sometimes curves are expressed in the form x = f(y):

Find the area between x = f(y) and x = g(y) forc < y < d.

Ifgly) > f(y):

S

d d
A= J (right — left) dy = J (g(y) —f(y)) dy

c [

d
Generally: |4~ | |g(y)~(y)] oy
c




Example: Find the area between x = y> — 12 and y = x.

b

ol L =

S % L

=3
Pl A=yt

Intersection points: y2 —12=y

N

= y?—y—-12=0 = y=4andy=-3

—these limits are y-limits.

4 4
Area: A:J mmp4wywzj(y—w?42nw
-3

T

= 1124y —y?) oy = (12y + %5 — %) &

y=—3



Lecture 8 Integration by Parts §8.1 Formula

Recall the Product Rule:
av u
Guv)=u¥i+v¥ = U’VZJ(deJrvdx)dXJr <
i.e. this is an antiderivative skip it since
J implies an

of the right-hand side
arbitrary constant

= u-v:JudvderJvdudx = u-v:Judv+Jvdu
ax ax
N e

av du

= Judv:u-v—Jvdu

Note:
—we are "trading” one integral | v dv for another [ v du (hopefully simpler).

—we use u — du (differentiation); dv — v (integration).
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§8.2 Examples

X . u-=x du = dx
QJ\X/w Use: dv:exdx} :>{ v =¢e
=U =qv
I=uv—[vdu=xe*— [eXdx =xe*—e"+ C O
~—— ~
simpler! don’t foget!
. u=Ix du=1dx
° J@xdf-/ Use: av = dx } = { 1% :;
=U =qv
I=uv—Jvdu=(nx) -x—[x-1dx=xInx—x+C. 0
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_ 2 _

Q | x? sinxdx Use: o =X = du = 2x dx

\/\—\g—/ dv =sin x dx V = —cosx
—=u —dv

I=uv—[vdu = x?(— cos x)—[(— cos x)(2x dx) =—x2 cos X+2 [ x cos x dx

~—

simpler as x' here

= Need another integration by parts:

u=x du = dx
[ x  cosxdx Use: = }
~— —~— =~ dv = cosx dx V =sinX
=u =av

Jxcosxdx=uv—[vdu=x-sinx— [sinxdx =X sinx+ cosx + C.

So l:fxzsinXdX:—X2c05X+2XsinX+2cosX+£/C_/. O

—C’

Lecture 8 Integration by Parts
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_ 1
4 U =tanTx du = 5 dx
(] than X dx Use: dv — x dx } = { y

=u

(Note: one can "simplify” tan—" (also In, sin~'...) by differentiating it!)

_ _ —1,).%2 x2 1 _ x? —1 1 x2
I=uv—[vdu=(tan™'x)- 5 —[% g dx="5 tan"'x—3 [ 55 o

here x> = (x> +1) — 1
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%) x— [x - dx

I=uv—[vdu=(sin~ Vi

substitution w = 1 — x?
adw = -2xdx = xdx = —fdw

.l
— X sin”'x — f dw

=X sin~ ! X—i-\/W—FC
= xsin ' x+v1—x2+C. O
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§8.3 Original Integral Reappears on the RHS...

3 .U =secx du = sec x tan x dx
sec’x dx Use:
° J‘—,—’ == dv = sec®x dx } { vV =tanx
u, dv=17?
(Recall that sec x = )
|=uv—[vdu=secx- -tanx — [secx- tan®x -dx
u ‘f f S~——
(sec2x—1)
= sec X - tan X — [sec3x dx + [sec x dx
—
= In|sec x + tan x| (Lecture 6)
:secx'tanx—fsecsxdx+|n|secx+tanxl—|—C.
=l
Sowegot: =secx-tanx — [+ In|secx +tanx|+ C
= 2 -l=secx-tanx+In|secx +tanx|+ C
= l:%secx~tanx+%InlsecX—i—tanXI—i—C’
fseCBXdX:%secx~tanx+%ln\secx—&-tanxl—i—C O
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3x Cu =¢e%* du = 3 e%*dx
° J&/W Use: dv = cos(2x) dx } :>{ v =} sin(2x)

I=uv—[vdu=e*-1sin(2x) — [] sin(2x) - 3 e3*dx

= |= % e sin(2x) — % e sin(2x) dx ()
3x . o u=¢e* du = 3 e**dx
For JE_,; ?'”(2;() o USE G in(2x) dx } { v = —1 cos(2x)
=qav

[e¥sin(2x)dx =uv— [vdu
= 3. (—% cos(2x)) — f(—% cos(2x)) - 3 e*¥dx

=—} €3 cos(2x) + 3 [€®*cos(2x) dx = —% €% cos(2x) + 2 I.

\
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Q (cont)

= (1 + %) | = % €% sin(2x) + % e3X cos(2x),

Remark: combining this result with (x), one gets
[e¥sin(2x) dx = %esx sin(2x) — % /

= % e3% sin(2x) — % e3% cos(2x) + C'.

Lecture 8 Integration by Parts 8/10



§8.4 Integration by Parts for Definite Integrals

Include the limits and evaluation symbol: jg Sdx=u v] b % dx
Examples:
Q J7.x M Use: clvaz;(inxdx} = {CT/UziXCOSX
g =dv
I:uv|g—fgvdu:x(—cosx‘ — [o(—cos x)
= (7 (—cosm) — 0) + [ cos x dx
=m+sinx|; =m+ (sinm—sin0) =n+(0—0) =m. O

Lecture 8 Integration by Parts 9/10



e 2
3 2 o u =(Inx)
ewadx Use: dv = x3dx } =

I=uv[{=[7vau=(nx)? 5[] = [7% 2(Inx)% dx

Lecture 8 Integration by Parts

du =2 (Inx)
4
— X
V=73
1294_1 e
4 2 J1

10/10
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