UNIVERSITY of LIMERICK
 OLLSCOIL LUIMNIGH

College of Informatics and Electronics

MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002
SEMESTER: Spring 2004

MODULE TITLE: Engineering Mathematics 2
DURATION OF EXAMINATION: 45 minutes

LECTURER: Dr. N. Kopteva
PERCENTAGE OF TOTAL MARKS: 30\%

EXTERNAL EXAMINER: Prof. J. D. Gibbon

INSTRUCTIONS TO CANDIDATES: Write all your answers and rough work on the examination paper. Do not write on anything else.
Under no circumstances should you use your own tables or be in possession of any writing material other than this exam paper.
Calculators are not permitted.
Answer all questions. To obtain maximum marks you must show all your work clearly and in detail.
The examination rules of the University apply to this midterm. Any breaches of these rules (and in particular any attempt at cheating) will result in disciplinary proceedings. For a first offence this can result in a year's suspension from the University.

Your Name: (Please print)

1 (a) Evaluate the indefinite integral $\int \frac{7 x^{2}-1}{x^{2 / 3}} d x$
(b) Calculate the area between $y=e^{x}+\sin (x)$ and the x-axis

$$
\text { for } 0 \leq x \leq \pi \text {. }
$$

(c) Express as a definite integral (but do not evaluate) the limit of the Riemann sum $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \ln \left(\sin \left(c_{i}\right)+c_{i}^{2}+1\right) \triangle x_{i}$, where P is the partition with $x_{i}=\frac{4 i}{n}$, for $i=0,1, \ldots, n, \quad \triangle x_{i} \equiv x_{i}-x_{i-1}, \quad c_{i} \in\left[x_{i-1}, x_{i}\right]$.
(d) Evaluate $\frac{d}{d x} \int_{1}^{4 x-1} \tan (\ln (t+1)) d t$.
(e) Find an upper bound for the error E_{S} in the Simpson's Rule approximation of the definite integral $\int_{1}^{3} f(x) d x$, using 100 subintervals, given that $M_{4} \equiv \max _{x \in[1,3]}\left|\frac{d^{4}}{d x^{4}} f(x)\right| \leq 45$.

2 Evaluate the indefinite integral $\int \cos ^{4}\left(t^{2}\right) \sin \left(t^{2}\right) 2 t d t$ 5%

[^0]4 Evaluate the definite integral $\int_{2}^{4} \frac{2 x+1}{x^{2}-4 x+5} d x$ 5\%

5 Perform a partial fraction expansion of $\frac{3 x-1}{x\left(x^{2}+2 x+1\right)}$. 5\%

[^0]: 3 Find the average value of $x^{3} \ln x$ on the interval $[1,3]$.
 5%

