College of Informatics and Electronics

MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002	SEMESTER: Spring 2004
MODULE TITLE: Engineering Mathematics 2	DURATION OF EXAMINATION: 45 minutes
LECTURER: Dr. N. Kopteva	PERCENTAGE OF TOTAL MARKS: 30%
EXTERNAL EXAMINER: Prof. J. D. Gibbon	
INSTRUCTIONS TO CANDIDATES: Write all your answers and rough work on the examination paper. Do not write on anything else. Under no circumstances should you use your own tables or be in possession of any writing	
material other than this exam paper.	own tables of be in possession of any writing
Calculators are not permitted.	
Answer all questions. To obtain maximum	marks you must show all your work clearly
and in detail.	
	oply to this midterm. Any breaches of these
	ating) will result in disciplinary proceedings
For a first offence this can result in a year's	suspension from the University.
Your Name: (Please print)	
Your UL ID:	

(a) Evaluate the indefinite integral $\int \frac{7x^2-1}{x^{2/3}} dx$

2%

- (b) Calculate the area between $y = e^x + \sin(x)$ and the x-axis for $0 \le x \le \pi$.
- 2%

(c) Express as a definite integral (but do not evaluate) the limit of the Riemann sum $\lim_{n\to\infty}\sum_{i=1}^n \ln(\sin(c_i)+c_i^2+1) \triangle x_i$, where P is the partition with $x_i = \frac{4i}{n}$, for i = 0, 1, ..., n, $\triangle x_i \equiv x_i - x_{i-1}$, $c_i \in [x_{i-1}, x_i]$. 2%

(d) Evaluate
$$\frac{d}{dx} \int_{1}^{4x-1} \tan(\ln(t+1)) dt$$
.

2%

(e) Find an upper bound for the error E_S in the Simpson's Rule approximation of the definite integral $\int_1^3 f(x)\,dx$, using 100 subintervals, given that $M_4 \equiv \max_{x\in[1,3]} \left|\frac{d^4}{dx^4}f(x)\right| \leq 45$.

2 Evaluate the indefinite integral $\int \cos^4(t^2) \sin(t^2) 2t \, dt$.

5%

3 Find the average value of $x^3 \ln x$ on the interval [1, 3].

5%

5%

4 Evaluate the definite integral $\int_2^4 \frac{2x+1}{x^2-4x+5} \, dx$.

5 Perform a partial fraction expansion of $\frac{3x-1}{x(x^2+2x+1)}$.