MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002 SEMESTER: Spring 2013

MODULE TITLE: Engineering Mathematics 2 DURATION OF EXAMINATION: 45 minutes

LECTURER: Dr. N. Kopteva PERCENTAGE OF TOTAL MARKS: 25%

Please, do NOT open this paper until ANNOUNCED by your lecturer

EVERYBODY IS SUPPOSED TO START AT THE SAME TIME

- 1 (a) Evaluate the indefinite integral $\int \frac{x^2 x}{\sqrt{x 1}} dx$. Hint: use an appropriate substitution.
- 2%
- (b) Calculate the area between $y = 2^x + \sin x$ and the x-axis for $0 \le x \le \pi$. 1%
- (c) Express as a definite integral and then $\underline{evaluate}$ the limit of the Riemann sum $\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{(c_i+3)^2}\, \triangle x$, where $c_i\in[x_{i-1},x_i]$, and we use the partition P with $x_i=-2+\frac{5i}{n}$ for $i=0,1,\ldots,n$ and $\triangle x\equiv x_i-x_{i-1}$.
- (d) Evaluate $\frac{d}{dx} \int_{\sqrt{x}}^{2x+1} (\sin t + t^2) dt$.
- (e) Find an upper bound for the error E_T in the Trapezoidal Rule approximation of the definite integral $\int_0^2 x \cos x \, dx$, using n subintervals. Choose n such that $E_T \leq \frac{2}{3} \cdot 10^{-4}$.

Hint: evaluate $M_2 \equiv \max_{x \in [0,2]} \left| \frac{d^2}{dx^2} (x \cos x) \right|$.

.....

2 Evaluate the indefinite integral $\int \cos^3 x \ dx$.

3 Find the average value of the function $\frac{4x+4}{x^2+4x}$ on the interval [1,4].

.....

4 Evaluate the indefinite integral $\int (8x^3-1) \ln x \ dx$. (Hint: use integration by parts.)

2 . . .

5 Perform a partial fraction expansion of $\frac{x^2+3}{(x^2+2x+1)(x^2+4)}$;

then evaluate the indefinite integral $\int \frac{x^2+3}{(x^2+2x+1)(x^2+4)} dx$.