MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002 SEMESTER: Spring 2018

MODULE TITLE: Engineering Mathematics 2 DURATION OF EXAMINATION: 45 minutes

LECTURER: Prof. N. Kopteva PERCENTAGE OF TOTAL MARKS: 25%

Please, do NOT open this paper until ANNOUNCED by your lecturer

EVERYBODY IS SUPPOSED TO START AT THE SAME TIME

2%

- 1 (a) Evaluate the indefinite integral $\int \frac{x^4}{\sqrt{x^5+7}} dx$. Hint: use an appropriate substitution.
 - (b) Calculate the area between $y=2^x-\frac{1}{(x+1)^2}$ and the x-axis for $0 \le x \le 1$.
 - (c) Express as a definite integral and then $\underline{evaluate}$ the limit of the Riemann sum $\lim_{n\to\infty}\sum_{i=1}^n\left(x_i^2+\sin(x_i^3)\right)\triangle x$, where we use the partition P with $x_i=-2+\frac{4i}{n}$ for $i=0,1,\ldots,n$ and $\triangle x\equiv x_i-x_{i-1}$.
 - (d) Evaluate $\frac{d}{dx} \left(\int_{x^2+1}^{x+11} \ln(t+\sin t) dt \right)$.
 - (e) Find an upper bound for the error E_S in the Simpson's Rule approximation of the definite integral $\int_0^9 \exp(-10x)\,dx$, using N subintervals. Evaluate $M_4 = \max_{x \in [0,\,9]} \left| \frac{d^4}{dx^4} \exp(-10x) \right|$. Then choose N such that $E_S \le 5 \cdot 10^{-2}$.

.....

- 2 Evaluate the indefinite integral $\int \sin^2 x \cos^2 x \, dx$. 3%
- 3 Find the average value of the function $\frac{x-5}{x^2+4x+3}$ on the interval [2,4].
- 4 Evaluate the indefinite integral $\int x (\ln x)^2 \ dx$. (Hint: use integration by parts.) 4%

5 Perform a partial fraction expansion of $\frac{4}{(x^2-1)(x+1)}$;

then evaluate the indefinite integral
$$\int \frac{4}{(x^2-1)(x+1)} dx$$
.