MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002 SEMESTER: Spring 2019

MODULE TITLE: Engineering Mathematics 2 DURATION OF EXAMINATION: 45 minutes

LECTURER: Prof. N. Kopteva PERCENTAGE OF TOTAL MARKS: 25%

Please, do NOT open this paper until ANNOUNCED by your lecturer

EVERYBODY IS SUPPOSED TO START AT THE SAME TIME

- 1 (a) Evaluate the indefinite integral $\int \frac{1}{x\sqrt{\ln x}}\,dx$ (for x>0). Hint: use an appropriate substitution.
 - (b) Calculate the area between $y = 5^x \frac{8}{(x+2)^3}$ and the x-axis for $0 \le x \le 2$.
 - (c) Express as a definite integral and then $\underline{evaluate}$ the limit of the Riemann sum $\lim_{n \to \infty} \sum_{i=1}^n \exp(-2x_i) \frac{1}{n}$, where we use the partition P with $x_i = \frac{2i}{n}$ for $i = 0, 1, \dots, n$.
 - (d) Evaluate $\frac{d}{dx} \left(\int_{x^3+x}^{x+1} \exp(t \sin t) dt \right)$.
 - (e) Consider the three functions: x^4 , $\sin(x^5 + x)$ and $x^4 + \sin(x^5 + x)$. Specify which of them is odd, even or neither.

Hence, evaluate the integral $\int_{-1}^{1} (x^4 + \sin(x^5 + x)) dx$. 2%

.....

- 2 Evaluate the indefinite integral $\int \sin^2 x \, \cos^5 x \, dx$.
- 3 Find the average value of the function $\frac{x-2}{x^2-6x+10}$ on the interval [3,4].

4 Evaluate the indefinite integral $\int x^3 \, (\ln x)^2 \, dx$. (Hint: use integration by parts.) 4%

.....

5 Perform a partial fraction expansion of $\frac{10}{(x^2-9)(x^2+1)}$;

then evaluate the indefinite integral $\int \frac{10}{(x^2-9)(x^2+1)} dx$. 5%