

MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002

SEMESTER: Spring 2025

MODULE TITLE: Engineering Mathematics 2

DURATION OF EXAMINATION: 40 minutes

LECTURER: Prof. N. Kopteva

PERCENTAGE OF TOTAL MARKS: **25%**

Please, do NOT open this paper

**until ANNOUNCED by your
lecturer**

**EVERYBODY IS SUPPOSED TO START AT THE
SAME TIME**

1 (a) Evaluate the indefinite integral $\int \frac{\sin(\ln x)}{x} dx$ (for $x > 0$).

Hint: use an appropriate substitution.

2%

(b) Calculate the area between $\frac{\sin(\ln x)}{x}$ and the x -axis for $1 \leq x \leq 2$.

Hint: you may use the result of the previous question.

2%

(c) Express as a definite integral and then evaluate the limit of the Riemann sum $\lim_{n \rightarrow \infty} \left(\sum_{i=1}^n \frac{1}{i+n} \right)$.

Hint: use a uniform partition of the interval $(0, 1)$ or another appropriate interval.

3%

(d) Evaluate $\frac{d}{dx} \left(\int_{x^2}^{x+x^2} \cos(1+t^2) dt \right)$.

2%

.....

2 Evaluate the indefinite integral $\int (\sin x)^3 (\cos x)^8 dx$.

3%

.....

3 Find the average value of the function $\frac{x+3}{x^2+2x+5}$ on the interval $[-1, 1]$.

4%

.....

4 Evaluate the indefinite integral $\int x \tan^{-1} x dx$.

Hint: use integration by parts.

3%

.....

5 Perform a partial fraction expansion of $\frac{4-3x}{(x^2-x-6)(x^2-4)}$;

then evaluate the indefinite integral $\int \frac{4-3x}{(x^2-x-6)(x^2-4)} dx$.

6%