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1. Answer parts (a) and (b), and one of parts (c) and (d). 30%

(a) The norm in the space H'(0,1) is given by 15%

[v]| = \//0 (v2(x) + v2(z)) dx .

Consider the problem:

—2u" +52x%u=f for x€(0,1),  u(0)=u(l)=0.

i. Obtain a weak formulation of this problem in the form of

e Variational problem (VAR):
Find u € V such that a(u,v) = L(v) Yve V.

Here a bilinear form af(-,-), a linear form L(-), and a subspace V of
H'(0,1) should be specified.
ii. Show that the bilinear form a(-,-) is symmetric.

iii. Then show that, for some positive constants o and -, one has
aljv||* < a(v,v) < A|lv||* forall veV.

Specify the constants o and 7.

iv. Using the properties of a(-,-) that you have established, prove that the
above Variational problem (VAR) is equivalent to the following
e Minimization problem (MIN):
Find v € V such that F(u) < F(v) Yv eV,
where F(v) = fa(v,v) — L(v).

(b) Obtain a weak formulation of the following problem: 3%
—u"+u=f for ze€(0,1), u'(0) =0, /(1) =—-2u(l)+5.

Note: you are expected to specify the space in which « is found, from which
space the arbitrary functions v are taken, and which boundary conditions u

and v are required to satisfy, if any.

(c¢) Consider the problem: 12%
Pu 0%u
_<@+0_y?):f for (z,y) € Q,
0
u(z,y) =0 for (x,y) € 08y, uéﬁl’ v) =0 for (z,y) € 00y,

where f is constant, €2 is a two-dimensional domain, the boundary of which
0f) is the union of disjoint sets 0€2; and 0€s.
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This problem is posed in the trapezoidal domain € (see below) with vertices
(0,0), (5h,0), (6h,2h), and (0,2h), while 0€2; is the part of the boundary

that overlaps with the line z = 0:

2h

o Q

0 bh  6h

The above problem is discretized using linear finite elements with the follow-

ing triangulation:

7 6 )
e2) e(®)
e e e(®)
1 2 3 4
Each e®, for i = 1,...,5, is a right-angled triangle similar to the one shown

below.

For this discretization:

i. Find the global stiffness matrix K(s and the global load vector F{y in
which the boundary conditions are still to be addressed.
ii. Find the global stiffness matrix K and the global load vector F' which
take the boundary conditions into consideration.
iii. Then write the numerical method as a linear system KU = F'. For each
entry of the unknown vector U, specify with which mesh node it is asso-

ciated.

Note that for the linear element

1 -1 0 h?
K9=21-1 5 —4 |, po L |
0 -4 4 3 1 n2
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(d) Recall the problem from part (b): 12%
—u"+u=f for z€(0,1), u'(0) =0, u'(1)=—2u(l)+5.

i. Suppose this problem is discretized using piecewise linear finite elements
with the local shape functions ¢§” and ¢§l), defined on each mesh element

e = (24, 2441), With h; = 2,41 — x;, by

i T — T
<Z51(c)290k< " ), k=12, o) =1-t  @ft) =t
Find the local stiffness matrix K® and the local load vector F¥), assum-

ing that f is constant.

ii. On the mesh {z;}},, where 2; = 1(i — 1) and hy = hy = hy = 3,
write the above numerical method as a linear system KU = F', where
K is the global stiffness matrix, F' is the global load vector, and U is
the computed-solution vector. For each entry of the unknown vector U
specify with which mesh node it is associated.

(Note: do not forget to address the boundary conditions.)

2. Answer parts (a), (b), (d), and one of parts (c) and (e). 25%

Let a be a positive constant. In the square domain 2 = (0,1) x (0,1) with the
boundary 02 consider the problem:

0’u  0%u ou ou
u a(8w2+8y2) +z ax 3ay f(as,y) or (l’,y)E )
u(z,y) =0 for (z,y) € 0.

This problem is discretized on the uniform mesh {(z;, y;)}ij=1,. N1, Where z; =
(¢—1)h, y; =(j —1)h, h=1/N, by the finite difference method:

U‘, ._|_U. _|_U _|_U‘ . _4U.. U 4_U.7 .
h _ i—1,5 i+1,j 4,J+1 i,j—1 ij 2 i+1,5 i—1,j
- 2 ) ot (e i)

(L)

2h
for i, = 2,..., N, with the boundary conditions:

Uij =0 for (Ii,y]’) € 00.
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(a) Specify the local truncation error r;; of this method associated with the mesh

node (z;,y;). Obtain a truncation error estimate of the form r;; = O(h?) for

some p > 0. 5%
(b) Show that the finite difference operator L", possibly under a certain condition

that involves h and a, satisfies the discrete maximum principle of the form: 6%

L";; <0 Vi,j=2,...,N .
7= J = V,;<0Vij=1,...,N+1,
Vi S0V (zi,y) € 00

Specify the discrete maximum principle condition on h, if one was used in

your proof.
(c) Using the result of part (b), show that the finite difference operator L" sat-

isfies the discrete comparison principle of the form: 6%

L'Wy,| < L"V,; Vi,j=2,...,N
IEIWy] < DV Vi, = Wy <VyVij=1,...,N+1
(Wil < ViV (w3,y;) € 00
(d) Using the discrete comparison principle described in part (c), show that 8%
_ h
I/Vij =0V ($7;, y]) € o) = i,j:rlr,l%,)}:\/—&—l VVU‘ < CO i,j:22}.?.(,N’L VVU}

for some positive constant Cj. Specify this constant.
(e) Using the result of part (a) and the property described in part (d), estimate

the error of the finite difference method 6%

max ‘U'-—u Ti, Y |
ij=1,..N+1 " (@i 93],

where U;; is the computed solution and u(x;,y;) is the exact solution at the

mesh node (z;,y;).
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3. Answer parts (a) and (d), and one of parts (b) and (c). 20%
Consider the problem
Up = Uy for x € (0,1), t >0,
u(0,t) =u(l,t) =0 for t >0,
u(z,0) = g(x) for x € [0, 1].
This problem is discretized on the uniform mesh
{(zj,tn), j=1,..N+1, m=1,2,..},
where r; = (j —1)h with h =1/N, and t,, = (m —1)k. Let U" be the computed
solution associated with the point (z;,%,,).
(a) Using Von Neumann’s method, prove that the Leap Frog method 9%
uptt—uptt U =20+ U,
2k N h? ’
is unconditionally unstable.
(b) Using Von Neumann’s method, find out whether the following method is
unconditionally stable, unconditionally unstable, or conditionally stable. If
it is conditionally stable, find the stability condition. 9%
m+1 m +1 m+1 m+1 m m m
Uim U7 g im 22077 + Uy Ut = 207+ U
k ' h? ' h? '
(c) Estimate the local truncation errors of the methods in parts (a) and (b) 9%
(d) For each of the methods in parts (a) and (b), specify whether it is implicit
or explicit. Explain your answer. 2%
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