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Abstract. A semilinear reaction-diffusion equation with multiple solu-
tions is considered in a smooth two-dimensional domain. Its diffusion
parameter ε2 is arbitrarily small, which induces boundary layers. We
extend the numerical method and its maximum norm error analysis of
the paper [N. Kopteva: Maximum norm error analysis of a 2d singularly
perturbed semilinear reaction-diffusion problem. Math. Comp., 2007], in
which a parametrization of the boundary ∂Ω is assumed to be known,
to a more practical case when the domain is defined by an ordered set of
boundary points. It is shown that, using layer-adapted meshes, one gets
second-order convergence in the discrete maximum norm, uniformly in ε.
Numerical experiments are performed to support the theoretical results.

1 Introduction

Consider the singularly perturbed semilinear reaction-diffusion problem

Fu ≡ −ε24u + b(x, u) = 0, x = (x1, x2) ∈ Ω ⊂ R2, (1a)
u(x) = g(x), x ∈ ∂Ω, (1b)

where ε is a small positive parameter, 4 = ∂2/∂x2
1 + ∂2/∂x2

2 is the Laplace
operator, and Ω is a bounded two-dimensional domain whose boundary ∂Ω
is sufficiently smooth. Assume also that the functions b and g are sufficiently
smooth. We shall examine solutions of (1) that exhibit boundary layer behaviour.

The aim of the present paper is to extend the numerical method and its
maximum norm error analysis of the recent paper [7], in which a parametriza-
tion of the boundary ∂Ω is assumed to be known, to a more practical case
when the domain is defined by an ordered set of boundary points {(ϕj , ψj)}M

j=0,
where (ϕ0, ψ0) = (ϕM , ψM ) and the distance between any two consecutive
points (ϕj−1, ψj−1) and (ϕj , ψj) does not exceed Ch for some constant C, while
C−1h ≤ M ≤ Ch.
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Fig. 1. Multiple boundary-layer solutions of model problem (33); in the interior subdo-
main u(x) ≈ ū0(x) (left) or u(x) ≈ −ū0(x) (right), where ±ū0(x) are stable solutions
of the reduced problem (2).

The reduced problem of (1) is defined by formally setting ε = 0 in (1a), viz.,

b(x, u0(x)) = 0 for x ∈ Ω. (2)

Any solution u0 of (2) does not in general satisfy the boundary condition (1b).
In the numerical analysis literature it is often assumed—see, e.g., [14, 2]—

that bu(x, u) > γ2 > 0 for all (x, u) ∈ Ω × R1, for some positive constant γ.
Under this condition the reduced problem has a unique solution u0, which is
sufficiently smooth in Ω̄. This global condition is nevertheless rather restrictive.
E.g., mathematical models of biological and chemical processes frequently involve
problems related to (1) with b(x, u) that is non-monotone with respect to u [11,
§14.7], [6, §2.3]. Hence, following [7], we consider problem (1) under the following
weaker assumptions from [5, 12]:

– it has a stable reduced solution, i.e., there exists a sufficiently smooth solution
u0 of (2) such that

bu(x, u0) > γ2 > 0 for all x ∈ Ω; (A1)

– the boundary condition satisfies
∫ v

u0(x)

b(x, s) ds > 0 for all v ∈ (
u0(x), g(x)

]′
, x ∈ ∂Ω. (A2)

Here the notation (a, b]′ is defined to be (a, b] when a < b and [b, a) when
a > b, while (a, b]′ = ∅ when a = b.

If g(x) ≈ u0(x), then (A2) follows from (A1) combined with (2); if g(x) = u0(x)
for some x ∈ ∂Ω, then (A2) does not impose any restriction on g at this point.

Conditions (A1), (A2) intrinsically arise from the asymptotic analysis of prob-
lem (1) and guarantee that there exists a boundary-layer solution u of (1) such
that u ≈ u0 in the interior subdomain of Ω away from the boundary, while the
boundary layer is of width O(ε| ln ε|) [5, 12, 7]. Note that assumption (A1) is
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Fig. 2. Layer-adapted mesh.

local. Furthermore, if multiple stable solutions of the reduced problem satisfy
(A2), problem (1) has multiple boundary-layer solutions; see Figure 1.

We discretize the domain as in Figure 2—see §§3.1, 4.1 for details—using
layer-adapted meshes of Bakhvalov and Shishkin types whose number of mesh
nodes does not exceed Ch−2. Here h > 0 is the maximum side length of mesh
elements of the layer-adapted meshes that we consider.

Then we discretize equation (1a) combining finite differences on the curvilin-
ear tensor-product part of the mesh and lumped mass linear finite elements on a
quasiuniform Delaunay triangulation in the interior region. Constructing discrete
sub- and super-solutions and then invoking the theory of Z-fields, we prove exis-
tence and investigate the accuracy of multiple discrete solutions of problem (1).
Our main result is Theorem 4.5 that states second-order convergence (with, in
the case of the Shishkin mesh, a logarithmic factor) in the discrete maximum
norm, uniformly in ε.

Throughout our analysis we assume that

ε ≤ Ch. (A3)

This is not a practical restriction, and from a theoretical viewpoint the analysis
of a nonlinear problem such as (1) would be very different if ε were not small.

Note that similar one-dimensional and two-dimensional problems were con-
sidered in [2–4, 8, 10, 14, 16]; see [7] for further discussion.

The paper is organized as follows. In §2 we discuss asymptotic properties
of solutions of (1) and construct sub- and super-solutions. In §3 we recall the
layer-adapted meshes and the numerical method from [7], which explicitly uses a
parametrization of the boundary ∂Ω. In §4 the above method is extended to to
a more practical case when the domain is defined by an ordered set of boundary
points. Precise convergence results for the numerical method are then derived
on Bakhvalov and Shishkin meshes. Finally, in §5, numerical results support our
error estimates.
Notation. Throughout this paper we let C denote a generic positive constant that
may take different values in different formulas, but is always independent of h
and ε. A subscripted C (e.g., C1) denotes a positive constant that is independent
of h and ε and takes a fixed value. For any two quantities w1 and w2, the notation
w1 = O(w2) means |w1| ≤ Cw2.



2 Local Curvilinear Coordinates. Asymptotic Expansion.
Sub-and Super-Solutions

Given a sufficiently smooth boundary ∂Ω, let its arc-length parametrization with
counterclockwise orientation be defined by

x1 = ϕ(l), x2 = ψ(l), 0 ≤ l ≤ L, (3)

where L is the arc-length of ∂Ω. Hence the tangent vector (ϕ′, ψ′) has magnitude
τ =

√
ϕ′2 + ψ′2 = 1 for all l. Furthermore, (ϕ(0), ψ(0)) = (ϕ(L), ψ(L)) and all

functions that are defined for l beyond [0, L] are understood as extended L-pe-
riodically. We also use the curvature κ of the boundary at (ϕ(l), ψ(l)) given by

κ = κ(l) = ϕ′ψ′′ − ψ′ϕ′′. (4)

In a narrow neighbourhood of ∂Ω that will be specified later, introduce the
curvilinear local coordinates (r, l) by

x1 = ϕ(l)− rψ′(l), x2 = ψ(l) + rϕ′(l), (5)

where (−ψ′, ϕ′) is the inward unit normal to ∂Ω at (ϕ(l), ψ(l)), which is orthog-
onal to the tangent vector (ϕ′, ψ′). Since ∂Ω is smooth, there exists a sufficiently
small constant C1 such that in the subdomain Ω̄C1 = {0 ≤ r ≤ C1} the new co-
ordinates are well-defined. Throughout the paper we shall use a smooth positive
cut-off function ω(x) that equals 1 for r ≤ C1/2 and vanishes in Ω̄\Ω̄C1 .

Lemma 2.1 ([7, Lemma 2.1]). For the Laplace operator we have

4u = η−1 ∂

∂r

(
η
∂u

∂r

)
+ η−1 ∂

∂l

(
η−1 ∂u

∂l

)
, where η := 1− κr. (6)

To obtain an asymptotic expansion, introduce the stretched variable ξ := r/ε
and the function v0(ξ, l) defined by −∂2v0/∂ξ2 + b(x̄, u0(x̄) + v0) = 0 for ξ > 0,
with the boundary conditions v0(0, l) = g(x̄) − u0(x̄) and v0(∞, l) = 0. Here
x̄ = x̄(l) := (ϕ(l), ψ(l)). Our conditions (A1),(A2) are precisely what is needed
to ensure existence and asymptotic properties of v0 [5, 12, 8].

Theorem 2.2 ([12, Theorem 3]). Under hypotheses (A1), (A2), for suffi-
ciently small ε there exists a solution u(x) of (1) in an O(ε)-neighbourhood of
the zero-order asymptotic expansion u0(x) + v0(ξ, l) ω(x).

Our sub- and super-solutions will invoke the function β(x; p) constructed in
[7, §2.3], which is a modified first-order asymptotic expansion such that

β(x; p) = u(x) + O(ε2 + p). (7)

The value p in the definition of β is a small real number that will be chosen later
and is typically o(h). To be more precise,

β(x; p) = u0(x) + v̄(ξ, l; p)ω(x) + C0p,
∣∣ ∂k+m

∂ξk ∂ml
v̄(ξ, l; p)

∣∣ ≤ Ce−γ0ξ, (8)

where C0 and γ0 are positive constants and γ2
0 < minx∈∂Ω bu(x, u0(x)).



Lemma 2.3 ([7, Corollaries 2.7, 2.9]). There exists p0 ∈ (0, γ2
0) such that

for all |p| ≤ p0 the function β(x; p) is well-defined. Furthermore, there exists
C0 > 0 and C2 > 0 such that C2ε

2 ≤ p ≤ p0 implies β(x;−p) ≤ β(x; p) and

Fβ(x;−p) ≤ −C0|p| γ2/2, Fβ(x; p) ≥ C0p γ2/2.

Such β(x;−p) and β(x; p) are called sub- and super-solutions of problem (1).

3 Numerical Method from [7]

3.1 Layer-Adapted Meshes

Introduce a small positive parameter σ that will be specified later. Let σ ≤ C1

so that the closed curve ∂Ωσ that is defined by the equation r = σ does not
intersect itself. Furthermore, let Ωσ be the interior of ∂Ωσ. Our problem will be
discretized separately in Ωσ and Ω \ Ωσ, to which we shall refer as the interior
region and the layer region respectively; see Figure 2.

The boundary-layer region Ω \ Ωσ is the rectangle (0, σ) × [0, L] in the co-
ordinates (r, l). Hence in this subdomain introduce the tensor-product mesh
{(ri, lj), i = 0, . . . , N, j = −1, . . . M}, where, as usual, r0 = 0, rN = σ, l0 = 0,
and lM = L, while l−1 = lM−1 − L. Furthermore, let {lj} be a quasiuniform
mesh on [0, L], i.e., C−1h ≤ lj − lj−1 ≤ Ch. The choice of the layer-adapted
mesh {ri} on [0, σ] is crucial and will be discussed later; see (a),(b). Now assume
only that ri − ri−1 ≤ h and C−1h−1 ≤ N ≤ Ch−1.

In the interior region Ωσ introduce a quasiuniform Delaunay triangulation,
i.e. the maximum side length of any triangle is at most h, the area of any triangle
is bounded below by Ch2, and the sum of the angles opposite to any edge is less
than or equal to π (while any angle opposite to ∂Ωσ does not exceed π/2).

Furthermore, let the union of all the triangles define a polygonal domain Ωh
σ

whose boundary vertices lie on ∂Ωσ. Note that we do not replace our original
domain Ω by a similar polygonal domain Ωh, since a significant part of the
boundary layer would be lost in Ω \Ωh. We also require that both the interior
and layer meshes have the same sets of nodes on ∂Ωσ.

We focus on two particular choices of {ri}:
3.1(a) Bakhvalov mesh. [1] Set σ := 2γ−1

0 ε| ln ε| and define the mesh {ri} by
ri := r

(
[1− ε] i/N

)
, i = 0 . . . , N, r(t) := −2γ0

−1ε ln(1− t) for t ∈ [0, 1− ε].
3.1(b) Shishkin mesh. [15] Set σ = 2γ−1

0 ε ln N and introduce a uniform mesh
{ri}N

i=0 on [0, σ], i.e. ri − ri−1 = σ/N = 2γ−1
0 εN−1ln N .

Note that if ε is sufficiently small—recall (A3)—the condition σ ≤ C1 is
satisfied and the meshes (a) and (b) are well-defined. If (A3) is not satisfied, but
(a) σ ≤ C1 and ε ≤ 1/2, or (b) σ ≤ C1, the meshes 3.1(a) and 3.1(b) remain well-
defined. Otherwise we have ε > C, i.e. our problem is not singularly perturbed.

3.2 Discretization in the Boundary-Layer Region

Recall that Ω \Ωσ is the rectangle (0, σ)× [0, L] in the coordinates (r, l). Hence
rewrite (1a) in (r, l) coordinates, by (6), and then discretize it using the standard



finite differences on the tensor-product mesh {(ri, lj)} [13]. In the interior of
Ω \Ωσ, i.e. for i = 1, . . . , N − 1, j = 0, . . .M − 1, set

FhUij := −ε2η−1
ij Dr[ζijD

−
r Uij ]− ε2η−1

ij Dl[ϑ−1
ij D−

l Uij ] + b(xij , Uij) = 0,

Ui,M = Ui,0, Ui,−1 = Ui,M−1, U0,j = g(x0,j).
(9)

Here Uij is the computed solution at the mesh node xij =
(
ϕj−riψ

′
j , ψj +riϕ

′
j

)
,

D−
r vij :=

vij − vi−1,j

ri − ri−1
, Drvij :=

vi+1,j − vij

(ri+1 − ri−1)/2
, (10)

D−
l vij :=

vij − vi,j−1

Hj
, Dlvij :=

vi,j+1 − vij

(Hj + Hj+1)/2
, Hj := lj − lj−1,

ηij := 1− κjri, ζij := 1− κjri−1/2, ϑij := 1− κj−1 + κj

2
ri,

while κj = κ(lj), ϕj = ϕ(lj), ψj = ψ(lj), ϕ′j = ϕ′(lj), and ψ′j = ψ′(lj).
On the interface boundary ∂Ωσ introduce the fictitious Neumann condition

∂u

∂r
= φ(x) for x ∈ ∂Ωσ. (11)

For i = N , j = 0, . . . M−1, following [13], we discretize (1a), (6), (11) as follows:

Fh
−UNj := −ε2 δ2

rUNj − ε2η−1
Nj Dl[ϑ−1

Nj D−
l UNj ] + b(xNj , UNj) = 0,

UN,M = UN,0, UN,−1 = UN,M−1,
(12)

where we use hN := rN − rN−1 and

δ2
rUNj := η−1

Nj

ηNj φj − ζNj D−
r UNj

hN/2
=

2
hN

φj − η−1
Nj

2
hN

ζNj D−
r UNj . (13)

Note that Fh
− involves an unknown function φ. The actual discretization on the

interface boundary ∂Ωh
σ is obtained by combining (12) with (16) eliminating φ.

3.3 Discretization in the Interior Region. Existence and Accuracy.

Let Sh ⊂ W 1
2 (Ωh

σ) be the standard finite element space of continuous functions
that are linear on each of the triangles of our mesh in Ωh

σ . In Ωh
σ define the

approximate solution U ∈ Sh by

ε2(∇U,∇χi) + ε2φi

∮

∂Ωh
σ

χi ds + b(Xi, Ui) (1, χi) = 0 ∀ χi ∈ Sh, (14)

where Xi is a mesh node in Ω̄h
σ , while Ui = U(Xi), φi = φ(Xi), and χi ∈ Sh

are the nodal basis functions, i.e. χi(Xj) equals 1 if i = j and 0 otherwise. Here
we used the lumped mass discretization of both the boundary integral and the
integral involving b.



At interior meshnodes Xi of Ωσ, our discretization (14) implies

FhUi :=
ε2

(1, χi)
(∇U,∇χi) + b(Xi, Ui) = 0 ∀ Xi ∈ Ωσ. (15)

Similarly, at mesh nodes Xj on the interface boundary ∂Ωσ, we get

Fh
+Uj :=

ε2

(1, χj)
(∇U,∇χj) +

ε2aj

h
φj + b(Xj , Uj) = 0 ∀ Xj ∈ ∂Ωσ, (16)

where
aj :=

h

(1, χj)

∮

∂Ωh
σ

χj ds, 0 < C−1 < aj < C. (17)

Finally the discretizations Fh
− (12) and Fh

+ (16) are compiled, eliminating φ, as
in [7, (3.14)]; see also a similar formula (29).

Theorem 3.1 ([7, Theorem 3.20]). Let the mesh {ri}N
i=0 be the Bakhvalov

mesh of §3.1(a), or the Shishkin mesh of §3.1(b). There exists a discrete solution
U of (9),(12),(15),(16) such that for h sufficiently small,

∣∣U(Xi)− u(Xi)
∣∣ ≤ Ch2| ln h|m ∀ mesh nodes Xi ∈ Ω̄,

where m = 0 for the Bakhvalov mesh (a) and m = 2 for the Shishkin mesh (b).

4 Numerical Method Using Approximate Curvature

We cannot implement the numerical method of §3 since no parametrization (3) is
available. Instead we are given an ordered set of boundary points {(ϕj , ψj)}M

j=0.
Using these data, we modify our method as follows.

4.1 Modified Layer-Adapted Meshes. Approximate Curvature

We imitate the layer-adapted meshes of §3.1 that use the arc-length parametriza-
tion (3), in which l = 0 is associated with (ϕ0, ψ0) and l = L is associated with
(ϕM , ψM ). The mesh {lj} is chosen on [0, L] so that (ϕj , ψj) = (ϕ(lj), ψ(lj)).
Clearly, this mesh {lj} exists and is unique, but the exact values of lj will remain
unknown. We associate (ri, lj) with the point x̃ij ≈ xij = x(ri, lj) defined by

x̃ij :=
(
ϕj − riψ̃

′
j , ψj + riϕ̃

′
j

)
. (18)

Here we normalize (ϕ̂′j , ψ̂
′
j) to get the unit vector

(
ϕ̃′j , ψ̃

′
j

)
:=[ϕ̂′2j +ψ̂′2j ]−1/2

(
ϕ̂′j , ψ̂

′
j

)
,

which approximates the unit vector (ϕ′(lj), ψ′(lj)). If H̃j+1 − H̃j = O(h2), we
simply set ϕ̂′j :=

(
D̃−

l ϕj + D̃−
l ϕj+1

)
/2 and ψ̂′j :=

(
D̃−

l ψj + D̃−
l ψj+1

)
/2. Other-

wise we modify ϕ̂′j , ψ̂′j to ϕ̂′j :=
(
H̃j+1D̃

−
l ϕj + H̃jD̃

−
l ϕj+1

)
/(H̃j + H̃j+1) and

ψ̂′j :=
(
H̃j+1D̃

−
l ψj + H̃jD̃

−
l ψj+1

)
/(H̃j + H̃j+1). Furthermore,

D̃−
l vij :=

vij − vi,j−1

H̃j

, D̃lvij :=
vi,j+1 − vij

(H̃j + H̃j+1)/2
,

H̃j :=
√

(ϕj − ϕj−1)2 + (ψj − ψj−1)2.
(19)



Next, let the ordered set of vertices {x̃Nj}M
j=0 define the polygonal domain

Ωh
σ , in which we introduce a quasiuniform Delaunay triangulation, whose set of

the boundary nodes is precisely the set {x̃Nj}M
j=1. Note that x̃Nj ≈ xNj ∈ ∂Ωσ

implies that ∂Ωh
σ is an O(h2)-perturbation of ∂Ωσ.

Furthermore, our method will invoke the approximate curvature κ̃j ≈ κ(lj):

κ̃j :=
D̃−

l ϕj + D̃−
l ϕj+1

2
D̃lD̃

−
l ψj − D̃−

l ψj + D̃−
l ψj+1

2
D̃lD̃

−
l ϕj (20)

—compare with (4)—for which a calculation shows that

κ̃j =
(ϕj − ϕj−1)(ψj+1 − ψj)− (ϕj+1 − ϕj)(ψj − ψj−1)

H̃jH̃j+1(H̃j + H̃j+1)/2
. (21)

Remark 4.1. Note that (20) gives a second-order approximation of κ(lj) only if
H̃j+1−H̃j = O(h2). Otherwise, (20) and hence (21) should be modified to another
standard second-order approximation of κ(lj), which involves {(ϕi, ψi)}j+2

i=j−2.

Lemma 4.2. For H̃j, κ̃j and x̃ij defined by (18),(19) and (20) combined with
Remark 4.1, we have

Hj = H̃j [1+O(h2)], κ̃j = κ(lj)+O(h2), x̃ij = xij+O(rih
2) = xij+O(σh2).

Proof. Since (3) is an arc-length parametrization, i.e.
√

ϕ′2(l) + ψ′2(l) = 1 for
all l, we have Hj = Hj

√
ϕ′2(lj−1/2) + ψ′2(lj−1/2), where

ϕ′(li−1/2) = (ϕj − ϕj−1)/Hj + O(H2
j ), ψ′(li−1/2) = (ψj − ψj−1)/Hj + O(H2

j ).

Combining this with C−1h ≤ H̃j ≤ Ch, we get Hj = H̃j [1 + O(h2)].
Since Hj = H̃j [1+O(h2)] implies D̃−

l = [1+O(h2)]D−
l , D̃l = [1+O(h2)]Dl,

it suffices to prove the desired estimates for κ̃j and x̃ij with D̃−
l and D̃l replaced

by D−
l and Dl in the definitions of κ̃j , ϕ̃′j and ψ̃′j . Such estimates follow imme-

diately from Taylor series expansions. Note that (ϕ̂′j , ψ̂
′
j) and the corresponding

normalized unit vector (ϕ̃′j , ψ̃
′
j) are both O(h2) approximations of the unit vector

(ϕ′(lj), ψ′(lj)). ¤

4.2 Modified Discretization in the Boundary-Layer Region

In Ω \Ωh
σ , i.e. for i = 1, . . . , N − 1, j = 0, . . .M − 1, we modify (9) as follows:

F̃hŨij := −ε2η̃−1
ij Dr[ζ̃ijD

−
r Ũij ]− ε2η̃−1

ij D̃l[ϑ̃−1
ij D̃−

l Ũij ] + b(x̃ij , Ũij) = 0,

Ũi,M = Ũi,0, Ũi,−1 = Ũi,M−1, Ũ0,j = g(x0,j).
(22)

Here Ũij is the discrete computed solution at the mesh node x̃ij , the finite
difference operators D−

r , Dr, D̃−
l , D̃l and the quantities x̃ij , κ̃j are defined by

(10),(19),(18) and (20) combined with Remark 4.1, while

η̃ij := 1− κ̃jri , ζ̃ij := 1− κ̃jri−1/2 , ϑ̃ij := 1− κ̃j−1 + κ̃j

2
ri .



For i = N , j = 0, . . . M − 1, imitating (12),(13), we discretize (1a),(6) com-
bined with (11) as follows:

F̃h
−ŨNj := −ε2 δ2

r ŨNj − ε2η̃−1
Nj D̃l[ϑ̃−1

Nj D̃−
l ŨNj ] + b(x̃Nj , ŨNj) = 0,

ŨN,M = ŨN,0, ŨN,−1 = ŨN,M−1,
(23)

where hN := rN − rN−1 and

δ2
r ŨNj := η̃−1

Nj

η̃Nj φj − ζ̃Nj D−
r ŨNj

hN/2
=

2
hN

φj − η̃−1
Nj

2
hN

ζ̃Nj D−
r ŨNj . (24)

Lemma 4.3. Let β(x; p) be described by (8), and the mesh {ri}N
i=0 be either the

Bakhvalov mesh of §3.1(a), or the Shishkin mesh of §3.1(b). Then for all |p| ≤ p0

at all interior mesh nodes xij , i = 1, . . . , N − 1, j = 0, . . . ,M − 1 we have
∣∣F̃hβ(xij)− Fβ(xij)

∣∣ ≤ Ch2| ln h|m, (25a)

while at all interface-boundary mesh nodes xNj ∈ ∂Ωh
σ we have

F̃h
−β(xNj)− Fβ(xNj) =

2ε2

hN

(∂β

∂r

∣∣∣
xNj)

− φj

)
+ O

(
h2

)
, (25b)

where m = 0 for the Bakhvalov mesh (a) and m = 2 for the Shishkin mesh (b).

Proof. [7, Lemma 3.11 and Lemma 3.13] state (25) with F̃h replaced by Fh.
Hence it remains to estimate F̃hβ(xij) − Fhβ(xij). Throughout this proof, we
use |∂kβ/∂rk| ≤ Cε−k and |∂kβ/∂lk| ≤ C, k = 1, 2, which follow from (8).

First, invoking the estimate for x̃ij of Lemma 4.2, we get

b(x̃ij , β(xij))− b(xij , β(xij)) = O(σh2) = O(h2). (26)

Furthermore, the estimates for H̃j and κ̃j of Lemma 4.2 imply that

ϑ̃−1
ij D̃−

l β(xij) = ϑ−1
ij D−

l β(xij)[1 + O(h2)] = ϑ−1
ij D−

l β(xij) + O(h2).

Combining this with a similar estimate

ε2η̃−1
ij D̃l[ϑ̃−1

ij D̃−
l β(xij)] = ε2η−1

ij Dl[ϑ̃−1
ij D̃−

l β(xij)][1 + O(h2)]

and Dl[O(h2)] = O(h), which follows from Hj = lj − lj−1 ≥ Ch, yields

ε2η̃−1
ij D̃l[ϑ̃−1

ij D̃−
l β(xij)] = ε2η−1

ij Dl[ϑ−1
ij D−

l β(xij)] + O(ε2h). (27)

Next, by the estimate for κ̃j of Lemma 4.2, we get

Dr[(ζ̃ij − ζij)D−
r β(xij)] = (κj − κ̃j)Dr[ri−1/2D

−
r β(xij)] = O(ε−2h2).

Combining this with η̃−1
ij = η−1

ij +O(σh2) and then with (26) and (27), we arrive
at F̃hβ(xij)−Fhβ(xij) = O(ε2h + h2) = O(h2), where we also used (A3). Thus
(25a) is established. Estimate (25b) is obtained similarly, observing that

(η̃Nj − ηNj) ∂β
∂r

∣∣
xNj
− (ζ̃Nj − ζNj)D−

r βNj

hN/2
=(κj−κ̃j)

rN
∂β
∂r

∣∣
xNj
− rN−1/2D

−
r βNj

hN/2
.
¤



4.3 Discretization in the Interior Region

In the interior part of the domain Ωh
σ we use the lumped-mass finite elements

(15),(16),(17); see also [7]:

F̃hŨi := FhŨi = 0 ∀ Xi ∈ Ωh
σ ; F̃h

+Ũj := Fh
+Ũj = 0 ∀ Xj ∈ ∂Ωh

σ . (28)

Finally, the discretization F̃h
− (23),(24) and the above discretization F̃h

+ are com-
piled as in [7] by eliminating the auxiliary unknown function φ:

F̃hŨj :=
(hN/2) F̃h

−Ũj + (h/aj) F̃h
+Ũj

hN/2 + h/aj
∀ Xj ∈ ∂Ωh

σ . (29)

Lemma 4.4 ([7, Lemmas 3.15, 3.16]). Let βI ∈ Sh be a non-standard piece-
wise linear interpolant of β(x; p) such that βI(Xi; p) := β(Xi; p) at all mesh
nodes Xi ∈ Ωh

σ , while βI(Xj ; p) := β(xNj ; p) at all mesh nodes Xj = x̃Nj ∈ ∂Ωh
σ .

Furthermore, let σ be chosen as in either §3.1(a) or §3.1(b). Then for all |p| ≤ p0

we have ∣∣F̃hβI
i − Fβ(Xi)

∣∣ ≤ Ch2 ∀ Xi ∈ Ωh
σ ; (30a)

at all mesh nodes Xj = x̃Nj on ∂Ωh
σ we have

F̃h
+βI

j − Fβ(xNj) = −aj
ε2

h

(∂β

∂r

∣∣∣
xNj

− φj

)
+ O(h2) ∀ Xj ∈ ∂Ωh

σ ; (30b)

and for F̃h of (29) at all mesh nodes Xj = x̃Nj on ∂Ωh
σ we have

∣∣F̃hβ(xNj)− Fβ(xNj)
∣∣ ≤ Ch2 ∀ Xj ∈ ∂Ωh

σ . (31)

Proof. [7, Lemmas 3.15, 3.16] give the desired estimates (30) in the case of βI

being the standard interpolant of β in Ω̄h
σ , and xNj replaced by Xj = x̃Nj .

Note that the proof of [7, Lemma 3.16] is applicable to the domain Ωh
σ , since

∂β/∂n = −∂β/∂r
∣∣
Xj

+ O(h) within O(h)-distance from Xj , which follows from

∂Ωh
σ being an O(h2)-perturbation of ∂Ωσ. Hence to prove (30), it suffices to show

that (i) the values of F̃h
+βI

j for the standard interpolant and the interpolant of
our Lemma 4.4 differ by O(h2); (ii) the values of F̃hβI

j enjoy a similar property;
(iii) Fβ(xNj)− Fβ(x̃Nj) = O(h2); (iv) similarly the values of ∂β/∂r at x̃Nj and
xNj differ by O(h2). These assertions (i)-(iv) follow from ‖β‖C2(Ω̄σ∪Ω̄h

σ) ≤ C

combined with |x̃Nj − xNj | ≤ Ch2 and (A3).
Estimate (31) (25b) and (30b) combined with (17); see the proof of [7, Lemma

3.18] for more details. ¤

4.4 Existence and Accuracy. Discrete Sub- and Super-solutions

Theorem 4.5. Let the mesh {ri}N
i=0 be either the Bakhvalov mesh of §3.1(a), or

the Shishkin mesh of §3.1(b). There exists a discrete solution Ũ of (22),(28),(29)
such that for h sufficiently small,

∣∣Ũ(Xi)− u(Xi)
∣∣ ≤ Ch2| ln h|m ∀ mesh nodes Xi ∈ Ω̄, (32)

where m = 0 for the Bakhvalov mesh (a) and m = 2 for the Shishkin mesh (b).



Table 1. Maximum nodal errors |U −u| in the numerical method [7] (upper part) and
additional errors |Ũ − U | induced by using an ordered set of boundary points instead
of an explicit parametrization of the domain (lower part)

Bakhvalov mesh Shishkin mesh
N ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−2 ε = 10−4 ε = 10−8

32 3.745e-3 3.842e-3 3.843e-3 3.915e-2 3.947e-2 3.948e-2
64 9.296e-4 9.534e-4 9.536e-4 1.318e-2 1.325e-2 1.325e-2

128 2.333e-4 2.388e-4 2.388e-4 4.004e-3 4.400e-3 4.401e-3
256 5.854e-5 5.967e-5 5.968e-5 1.008e-3 1.430e-3 1.430e-3

32 4.764e-3 7.745e-6 1.586e-9 3.157e-3 6.711e-6 6.641e-10
64 1.248e-3 2.060e-6 4.206e-10 1.105e-3 1.786e-6 1.765e-10

128 3.436e-4 5.177e-7 1.061e-10 3.514e-4 4.482e-7 4.423e-11
256 8.607e-5 1.480e-7 3.035e-11 8.812e-5 1.475e-7 1.460e-11

Proof. We invoke the theory of Z-fields, imitating the proofs of [7, Lemma
3.19, Theorem 3.20]. Set p̄ := C3h

2| ln h|m, where C3 > 0 is a sufficiently
large constant. Now combining Lemma 2.3 with (25a), (30a) and (31), we con-
clude that the functions equal to β(xij ;±p) at x̃ij and β(Xi;±p) at Xi ∈ Ωh

σ

are discrete sub- and supers-solutions, where ’−’ is used for the sub-solution
and ’+’ is used for the super-solution. Since our discrete operator F̃h is a
Z-field—see [9], [7, §3.2]—by [7, Lemma 3.6], there exists a discrete solution
Ũ between our sub- and super-solutions. Using (8) and Lemma 4.2, observe
that |xij − x̃ij | = O(rijh

2) combined with |∇βij | ≤ C[1 + ε−1e−γ0rij/ε] im-
plies β(xij) = β(x̃ij) + O(h2). Hence our discrete solution Ũ(Xi) is between
β(Xi;−p) − O(h2) and β(Xi; p) + O(h2) for all mesh nodes Xi ∈ Ω̄, which
combined with (7) and (A3), yields the desired error estimate. ¤

5 Numerical Results

Our model problem is (1) in the domain Ω—see Figure 2 and [7, §7]—in which

b(x, u) =
(
u− ū0(x)

)
u
(
u + ū0(x)

)
, ū0(x) = x2

1 + x1 + 1. (33)

Here ±ū0(x) are two stable solutions and 0 is an unstable solution of the corre-
sponding reduced problem. The boundary condition g(x) = (x1−x2

1)/3 satisfies
(A2) for both ±ū0; see Figure 1. We present numerical results for the solution
u near ū0; see Figure 1 (left); the results for the solution near −ū0 are similar.

Table 1 gives numerical results for the Bakhvalov and Shishkin meshes with
the parameter γ0 := 3

√
2/5. The upper part of the table shows maximum nodal

errors maxi |Ui − u(Xi)|—which are computed as described in [8, §4]—for the
numerical method [7], which requires an explicit parametrization of the domain.
The lower part of the table shows the additional errors maxi |Ũi − Ui| induced
by switching to the method of §4, which instead uses an ordered set of boundary



points. The errors in the lower part of the table are comparable with the errors
in the upper part and decay very fast as ε tends to 0.

In summary, the numerical results support our error estimates of Theo-
rems 3.1 and 4.5. Thus, we observe that even if no explicit parametrization
of the domain is available, the modification of the numerical method [7], which
we presented in this paper, produces reliable computed solutions.
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