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1 Model problem: no boundary layer

Consider the problem

—eu’ —u' = f for xz€(0,1), w(0) =u(l) =0 (1)

/ f(z)dx = 0. (2)
0

The unique solution of problem (1) is given by

under the condition

u(z) = — /01[1 — e(s_m)/e]f(s) ds + ﬂ /01[1 - e(s_m)/e]f(s) ds.

1—e-1l/e

[ o] < el
0

we obtain
1—e%/e
/f )ds + __1/€/f )ds + O(e).
Finally, by (2), we get

—/wa(s) ds + O(e). (3)

Thus, condition (2) implies that the solution has no boundary layer.



2 Central difference approximation on uniform
meshes

Introduce the uniform mesh {z; =iH [i=0...N, H=N"'}.
The central difference scheme is given by
z+1 —2u) +ul, Uﬁl —ul,

—& 772 - Vi =f; for i=1...N—1, (4)

where ul =uly =0, f;:= f(z;).

The solution of this discrete problem is

i—1 qz N— 1
Z 1 - q fJH + N (5)
Jj=1 ]:1
where
 1-2¢/H
142 /H’
Clearly, representation (5) might be rewritten as
qi _ qN i—1 qi N-1
ugvz_l_qN (1- )fjH+ qNZ (6)
j=1 j=1

We are interested in the extreme case of ¢ < H and even ¢ < HZ2.
Furthermore, we shall assume that H is fixed while € — 0. Then we have

lim ¢ = —1, lim ¢' = (—=1)%, (i >0), linéqN:(—l)N.
E—

e—0 e—0

2.1 N is odd

We shall use (6). Consider the two cases separately:
(i) 7 is odd.

In this case we have lir% = liH(l) q" = —1, which, by (6), implies that
N-1 1
Il = Y feH) = [ f@)de o),

j=i+1, jiseven

Hence, by (2),(3), we have

ul —u(x;)| = O(H?).
(ii) ¢ is even. _
In this case we have lin}) vV =1, lir% ¢' = 1, which, by (6), implies that
;IE%UN - Z fi(2H) = / f(x)dx + O(H?).
j=1,jisodd



Now, by (3), we again have

lin%) ul —u(x;)| = O(H?).

2.2 N is even

We shall use (5). Consider the two cases separately:

(i) ¢ is even. _

In this case we have lin%) ¢V = lir% ¢' = 1, which, by (5), implies that
E— E—

i—1 . N-1
N _ )
limu” =~ Z LR+ Z fi(2H).
j=1,jisodd j=1,jisodd
Here we used ,
1—¢ )
lim —

5—>01—q _N.

Hence, using (2), we get

hmu /f da:+x,/f Ydx + O(H?) = /f )dx 4+ O(H?).

Now, by (3), we again have

—u(z;)| = O(H?).
(ii) i is odd—the interesting case!
In this case we have lin%) ¥ =1, lir% ¢' = —1, which, by (5), implies that
E— E—

N-2

Y. fi2H)=0()

j=2,jiseven

. N _
O

—x (Rl +R2)a

e—0

where, by (2),

N-2 1
Ry = [f1/2H+ > fj(2H)+fN—1/2H} — | fz)dz = O(H?).

j=2,jiseven 0

Ry :=—(fi2+ fn—1/2)H = O(H).
Since one can easily construct many functions f(z) such that |Ry + Rs| > CH,
we arrive at
Corollary. If N is even, there exist many functions f(x) such that for odd
1 we have

u;t —u(x;)| = oo.

Remark. However, for certain functions we cannot see this interesting
effect of oscillating computed solutions. E.g., if f(z) is linear and satisfies
f(z) =—=f(1—2x), then Ry = Ry = 0.



