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For an ordinary second-order differential equation in which the coefficient of the highest derivative
is a small parameter, the classical difference scheme which uses a central difference ratio to
approximate the first derivative is investigated. By means of a detailed analysis of Green’s function
of the grid problem, it is established that the scheme is solvable on Shishkin’s piecewise-uniform
grid which clusters in the boundary layer and has uniform accuracy O(N 2 In®> N) with respect to
the small parameter, where N is the number of grid nodes. © 1997 Elsevier Science Ltd. All rights
reserved.

INTRODUCTION

For a singularly perturbed ordinary second-order differential equation, we will consider the simplest
two-point boundary-value problemj

Lu=s—-g(p(xu’Y —r(x)u’ = f(x), O0<x<l|, (1)
H(D)=§0, “{l)=3|,

where
p(x)= p, =const >0, r(x)=r =const>0, (2)

and &£ €(0, 1] is a small parameter. It is well known [1] that as £ —0 in the half-interval 0 <x =<1 the
solution of this problem converges to the solution of the degenerate problem

-r(x) v’'=f(x), v()=g,

and for small ¢ the boundary condition, unused in the degenerate problem, leads to the formation in the
neighbourhood of the point x =0 of a so-called boundary layer, where the solution u(x) of the original
problem (1) varies strongly.

The presence of the small parameter and the boundary layer that it generates leads to considerable
difficulties in the numerical solution of problem (1) and others like it (see [2, 3], for example). Attempts
have been made to overcome these in at least two ways: by developing “adjusting schemes” [2, 4] which
converge uniformly with respect to the small parameter on arbitrary grids, and by using special non-

- uniform grids which cluster in the boundary layer, for ordinary difference schemes [35, 6].
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T After the paper had gone to press, we established that the results also apply to the equation Lu+qu=f{x) with g(x)=0, which
is more general than (1).
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Let = {x;]0=x,<...<xy,=1} be an arbitrary non-uniform grid in [0, 1]. As usual we put
h=xi—xiy, hi=(h+h,)I2 vg=@,-v,,)/h,
Vi =Vzin V=@ Vi MR, V=W -v)/h

and on the grid  construct the classical approximation of problem (1)

~£(p"‘u:)i‘_—ﬁh(0u2+(1—c)u‘:},-= e G AN A, 3)
up =go, Uy =8,
where ¢ = const is a parameter of the scheme, and
pl=p(xi—h12), r=rix) f'=f(x) C))

We know (see [7] for example) that if the grid ® is uniform, that is, all ;= & = 1/N, on smooth solutions
of Eq. (1) the approximation error of difference scheme (3) with o =1/2 is O(h*), whereas it is only
O(h) when o = 1. However, on an arbitrary grid with small £ for =1 scheme (3) is monotone and thus
conforms to the maximum principle [7], but for o= 1/2, the maximum principle only applies to (3)
provided that the parameter ¢ is not too small compared with A,. The absence of a maximum principle in
scheme (3) for o= 1/2 leads to a “sawtoothed” solution, which has given it a bad reputation amongst
computer users. It should be noted, however, that if the grid @ has not been specially adapted to solve
problem (1) for small &, scheme (3) is not uniformly convergent with respect to & for either = 1/2 or
o= 1. Even so, the fact, established in [8], that outside the boundary layer on a uniform grid ®, scheme
(3) with o =1 converges at a rate O(h), is an argument in its favour. This is not the case when 0 =1/2, as
simple examples show.

The uniform convergence of scheme (3) with respect to & on the entire grid was first investigated by
Shishkin (see [6], for example), who introduced a piecewise-uniform grid

Q={x;lx;=ih, i=12,...,n; x;=x,+(i-n)H, i=n+1....N-1, h=38/n, (%)
H=(1-38)/(N-n), d=min{CelnN,A), N/n=B=0(1), 0<A<]l},

which clusters in the boundary layer, and proved that on grid (5) for o = 1 with C> p(0)/r(0) scheme (3)
converges uniformly with respect to ¢ in the sense of the grid norm C(£)) at a rate O(N "' In*N). A
modification of the monotone scheme of Samarskii [7] was constructed in [3] and its uniform convergence
with respect to € at a rate O(N > In’ N) in the same norm was proved on grid (5) with C>2p(0)/r(0).
Below we shall investigate scheme (3) with o= 1/2 on the same grid (5). We will rewrite it in the form

(Lu"), = —e(phul )y —rtul = f, i=12,. N =], (6)
“3 = &0 “f\’a =&n
where v;;=(v;,, —v,_,)/ (2h,) is the central difference ratio.

Theorem 1. Let u(x) be a solution of problem (1), (2) with sufficiently smooth coefficients and
right-hand side, and let " be a solution of (6), (4) on the Shishkin grid (5). Then if the parameter C of the
grid () satisfies the condition

C>2p(0)/ r(0), (7
and N= N,y ( p(x), r(x)), then

maxlu(x; )~ u"’(x,-)l= O(N21n’ N)

uniformly with respect to e.
The present paper is devoted to the proof of this theorem.

1. GREEN’'S GRID FUNCTION

The key to the proof of Theorem 1 is the proof of uniform boundedness with respect to & of Green’s
function G (x;, §;) of problem (6). As a function of x, for fixed &,, Green’s function is defined by the relations
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U'G(x.§)=8"(x.§,) xe€Q, §;eq (1.1)
G(0.5,)=G(L.§;)=0, §;€Q, (1.2)
where
Al for x; =&,
sh{xhg;‘)= J
0 for x; %,

is the grid analogue of Dirac’s delta function.
Let

N-1
(upv)= Y ujvjhj (1.3)
j=
be the scalar product defined for functions u(x;) and v(x;) which are assigned on @ and vanish for j=0

and j=N. Then if v*(x,) is a solution of problem (6) with homogeneous boundary conditions v*(0) =
v"(1)=0, we have

v (x) = (G(x:.8)) (& ))). (1.4)
Let L*" denote the conjugate grid operator to L” of (6) in the sense of the scalar product (1.3), that is,
(Lup )=, M)
It is easily verified that
(L )IE—E(phvE)&i-i—(r"v}é. (1.5)
The operator L' can be used to describe the function G (x,, & ) as a function of §; for fixed x,. Thus:
L"G(x,.§))=8"E&.x). §jeQx e (1.6)
G(x,,0)=G(x,,1)=0, x;eQ.

We will construct the function G(x,, &) in explicit form. To do so, we consider the function a(x,) =
«;, which is a solution of the following Cauchy grid problem:

Po=0, %20, 0y=0, [Ep{' +%Lr0")a,'0 = (1.7)
Putting here
e(pla_ ) =w, i=12,..N, (1.8)
and bearing (6) in mind, we find that w, satisfies the recurrence relation
h
w,.+,_w,.+i{ iy w,.“+i,,w,.]=o. (1.9)
2 i+l €p;
Hence
Wit = qiWi» (1.10)
where
k A =
qi=[1_5hjl](1+ﬁh‘;‘] soi=hL20.N-1 (1.11)
2ep; 2€p;

and therefore

i-1
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We now define w; and ¢, for i =0, putting /=0 and /,=0 in (1.9) and (1.11). Then, remembering the
second initial condition (1.7), we will have

i-1
w,=I1 g, i=0,1..,N. (1.12)
k=0
From (1.8) and the first initial condition of (1.7) we find
o, e Zip, i=01,...,N. (1.13)
Ei=1 P

We now construct G (x;, ;). Since in addition to o, the function a; = const is also a solution of Eq. (1.7),
Green’s function can be sought in the form
B;a,, =],
((XN-—C(‘-)BJ, i?}.
This function satisfies Eq. (1.1) with x;# §; and boundary condition (1.2). From the requirement of a unique
representation for i =; we have B;a,= (ay — o), and, therefore,

G(xj,gj)zcx{

- G,(aN-(IJ)BJfCtJ', iﬁj,

G("f"'if"“‘{(a,v—a,-)ﬂ,. i> ).

Now the function G(x,, ) satisfies Eq. (1.6) with respect to the variable §, and, therefore, B, is such
that, together with B, = B,/a, it satisfies the equation

L'v; =0, &;eQ. (1.15)

Since G(x,, 0) should also vanish and B,=B,a,=0, let

(1.14)

h* h
By =0. &€, By=0. epByo="(r"Byo=1. (1.16)
We will find ;. It follows from (1.15) and (1.5) that

E‘D?"'PE,_,HI —(r‘,-"v_,- +r}-“’+p}-+|)!2=const. J=01,. . . N-1L {1.17)

h h
riah: rih.
zq’jﬂ 2@;4—!

“t -1
r9'+ h, iy

Vel 1-% =qjlvy| -S| -
ep;+] ZSPJ;

Comparing this with (1.10), we conclude that

-1
h
A
v;=c|:w_f-[1-;"api)] oD e N, (1.18)
i

where w; is defined by (1.12). From this and (1.12) it follows that v;, being a solution of Eq. (1.15), cannot
take the role of B, the solution of problem (1.16), because the condition v,=0 yields a solution which is
identically zero. Thus v, takes the role of B; and, therefore, we can put

B, =va;. (1.19)

Now substituting (1.19) into the second initial condition of (1.16) and bearing (1.13) and (1.18) in mind,
we find that this condition will be satisfied if we put ¢=1 in (1.18).

It remains to determine the constant ¢ in (1.14). To do so we must substitute (1.14) with the value found
for B; into (1.1) and put i =/, obtaining the value ¢=ay'. Thus, Green’s function G(x,, &) is completely
defined and can be written in the form

If const =0, then

or, allowing for (1.11),
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)
r'h o (0 —0), i<,
G(xi.éj)=[wj[l--2-t—;;7JuN] x{(aﬂ_a”&j‘ = (1.20)

i

Remark 1. Of course, relation (1.19) could be obtained without recourse to Green’s function, simply by solving
Eq. (1.17) with const # 0. A solution of this equation in the form (1.18) with ¢ =c¢; can be found by the method of
variation of a constant.

It is worth noting that the representation of Green’s function in (1.20) is completely proper provided
that [1 — r"h /(2ep])]# 0 for any §; € (). Otherwise further elucidation is required, as follows.
Fori= < <j consndf:r the functions

_¥i_q
M Wi _kl;[l i L
and
Aﬁ#___l__z Sy (1.22)
w; Ei=i Py
where w, and o, are given by relations (1.12) and (1.13), respectively. Obviously for i<m <j
W "Vrmwm; w;m‘?mwmﬂ,j' (1.23}
and
Ay = A + Wima1Ams,j- (1.24)
We will rewrite G(x;, &) of (1.20) in terms of W and 4. Since, by (1.11),
h o
Th; ih
wj l_rf .:’ =wj+l y J'+] ;
28‘;’; ZEP;H
substituting this relation into the denominator of (1.20) and using (1.22) and (1.21), we will have
hh R A F )
ri'h; oA N, i<j,
LB = i . 8 N - (1:25)
G(x;,8)) 1:[1 o 294;;'*1 ]GN] x{ oA w Wi 1=

This is a proper representation of G (x,, £;) whether or not any of the g, vanish. Both representations (1.20)
and (1.25) of Green’s function will be used below.

2. AUXILIARY BOUNDS

Before coming to the direct estimation of the function G(x;, §;), we will establish some auxiliary
estimates. Since the coefficients p(x) and r(x) of Eq. (1) have been assumed to be continuous on [0, 1],
they are bounded there. Let

px)sp, rx)=r. (2.1)

Lemma 1. If the coefficients p(x) and r(x) of Eq. (1) satisfy inequalities (2), (2.1), and the number of
nodes of the grid () satisfies the condition

N> N,, where N, = max{S.% BCln N, } (2.2)
]
then fori=1, 2, .. ., n the solution of problem (1.7) increases monotonely and satisfies the inequalities
Po_gyso;sE-a-7"), i=12...n 2.3)

pr Po’o
where
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_ _ -l -1
O G ERR Y Y R
2gp, 2ep, 2ep 2ep
Also,
oi-1 —i-1
0< sw; < —, i=L2,...n (2.5)
1+hF/2(gpy) 1+ hry 1 (2€p)
Proof. We will first show that, under the given assumptions,
§>0. . (2.6)
We find from (2.4) that (2.6) will hold if
h<2ep,/r. 2.7

We first find a bound for 4. By definition (5), h=8/n=B8/N. If CeIn N<4, by (5), 8=CeIn N and
h=(BCe In N)/N. Since the function N~' In N is decreasing for N = 3, from (2.2), we have

h<(BCelnN))/ N, <2ep, /T
Butif Celn N=A4, we have § = A,
h=AB/N=<(BCelnN)/N,
and again, using (2.2), we arrive at (2.7). This proves that g is positive.

Finding bounds for ¢, from (1.11) by using (4), (2) and (2.1) and bearing (2.4) and (2.6) in mind, we
will have :

0<§<gq<g<l, i=12,..n-1 (2.8)

The use of these inequalities for (1.12) leads to (2.5). By virtue of (1.8), the monotone increase of a(x;)
is a consequence of the fact, which has already been proved, that w; is positive. Finally, bounds (2.3) follow
from (1.13) and (2.5). This proves the lemma.

Lemma 2. Let the coefficients p(x) and r(x) of Eq. (1) be continuously differentiable functions which
satisfy conditions (2), (2.1) and

Ip’(xl=< ¢, IF(x)I<ge. (2.9)
If, in addition, there is a sufficiently large number of nodes in the grid (2, that is,
N= N, =N,(p.r) (2.10)
(cf. (2.26) and (2.23)), then forj=i=n+1
|W;l=< p/ py, . (2.11)
14,1 L(Hf—’ﬁ—}cz, (2.12)
Po'o 2ep

where 1 <c¢,=c¢,(p, r) (cf. (2.29)).

Proof. As k runs through values from i=n+1 to j— 1, the behaviour of the function g, of (1.11)
conforms with one of the following scenarios: (1) g, remains positive for all k; (2) g, remains negative for
all &; (3) g, changes sign or vanishes. We will consider each of these separately.

1. Let g, >0 forisk=j—1. Since i=n+ 1, we have

P a 2l
SRS S A LS
2epy 2ep;4 2¢p 2ep

0<W;<Q <1,
which does not conflict with (2.11). Then

and, therefore,
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UﬁA.ﬁii Q*-f=imL=_P_(|+H_@], (2.14)
€py =i € 1-Q  poto 2ep
which is the same as (2.12) with ¢, =1.
2. Let g, <0 for i=<k=j— 1. Since for any positive a and b the fraction (—1 +a)/(1 +b)>—1, we
have

h h W e b
0>, = pk;l [-l - 26;?: )(l a2 2€Pr¢h+1 ] = _ Pk:] : (2.15)
Py Hry Py

and therefore
hy b=
Wyl p;j / pi <P/ pos
which is the same as (2.11). Then, using (1.21) and (1.22) we find that

ul v 1
A =—| —+ =t 4 — = (2.16)
LR [Pf’ Pl P} 5 q*}

h k
=£[;[m+qf]+@[@+m)h

A h
€| Pixl \ Pi Pi+3 \ Pi+2

s R h
122 [1-(-1y" p;
. 0 H qﬁ' kf -+q}."l &
pj k=i 2 p

i=1

If (j—1) is an odd number, by virtue of (2.15) each of the expressions in round brackets in this sum
are positive. Their coefficients are also positive and, therefore,

4,>0. (2.17)

The only difference if (j — 1) is even is that the quantity in the round brackets in the last term will be
negative. But its coefficient will also be negative, and again (2.17) holds.

We now take the first term in the representation of 4, in the form (2.16) to the left-hand side, and group
the remaining terms, again in pairs:

H1 H| q [pt
Ap———F=— %{ﬂiﬂhi]‘“m :
E P & Pisa\ Pin

The same reasoning leads to the conclusion that
A —Eiﬁ <0.
£ pi
Combining this inequality with (2.17), we obtain
IA,}I< ﬂl = -E

1
-, (2.18)
€pl Ep
which is consistent with (2.12) when ¢, = 2.

3. Suppose g, varies in sign. Let the natural number m lying between i and j—1 be such that all
Gm+1s - - -» 4, are of one sign, and g, are of the other, or zero. Then when m + 1 <k= — 1, the quantity

q, is described by either (1) or (2) above, which proves the lemma. Thus by virtue of (2.11)
Wi, =1G sy - g 1S B/ po.
Hence, from (1.23), we obtain

W,

m+l.j

W, 1=l W, (2.19)

im4m

1w 12|
bl 219

ul:

If g,,= 0, then W, =0 and the bound (2.11) is obvious. Thus, let g,,# 0 and g, ¢, <0.
Consider the function
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2
q(x)=[|— Hix) }[H Hrlx) } (2.20)
2ep(x—-H/2) 2ep(x+ H/2)

Bearing (4) and (1.11) in mind, we conclude that g,,= ¢ (x,,) just as g,,., =¢(x,,+). Since, by hypothesis,
q,, and g, ., have different signs, the function ¢ (x), being continuous, vanishes at a point £ € (x,,, X,,+ ).
Thus we find that

H_,p&-HI2) 2p @2.21)
€ r(§) I
and
O = Q(g) * (’tm _g)q’(n) = (-xm P 5)4'(71), ne (xm’ E.r) (222)

We now obtain bounds for ¢’ (x). It follows from (2.20) that
=1 ’
T _i {4 Hr(x) r(x) 3
2e 2ep(x+HI2) plx—H/2)

HEgy ")
+(__p(x +H] 2)] "m} :

For the first two factors we have

-1 =
Hho 08 | o
2g 2ep(x+H/2) Ly

Then, since (2), (2.1) and (2.9) imply that

v

r(x) : <a(P+F)
px+H/D]||™  p}

and from (2.13) and (2.15) we have |g(x)|=p/p,, it follows that
1g’(x)I< E[M{Hi)]-q (2.23)
_ "o Po Po
and g,, of (2.22) satisfies the inequality
1,y IS c3H. (2.24)
Substituting this bound into (2.19), and noting that, by (5),

H=l_65 1 ’
N-n (1-1/B)N

we will have

P &)
|W,}.ist'.v,-,,,ip—o(1_lww. (2.25)

Let the number N,, which occurs in the lemma, satisfy the inequality

pes
Ny 22—t 2.26
2% po(1=1/B) ed)

Then from (2.25) and (2.10) we find that
IW1<IW,, 1. (2.27)

This completes the first stage of finding a bound for | #;;|. In the second stage, by picking out the next
change of sign of g, and repeating the above argument, we obtain the bound
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I (2.28)

where the number m;, <m — 1 is such thatg,, ., . . ., g,,_, are of one sign, and g,,, are of the other, or zero.
Hence from (2.27) we have

| Wy S Wy .

This process can be continued until there is no change of sign in the remaining g, which form W, on the
right-hand side of a bound like (2.28). Then these g, satisfy one of the conditions (1) and (2), which
completes the proof of (2.11).

We now turn to 4,,. From (1.24) and (1.23),
Aij = Ar'm * V”i’,mﬂ‘qmﬂ,j’ = Aim T+ “’c‘QOAm-rl,y

By virtue of the choice of m, allowing for (2.14) and (2.18), 4,,., ; satisfies inequality (2.12) with ¢, =2.
For W,, we have the bound (2.11), and for g,, we have the bound (2.24). Thus

IA,}ISIA;-,,,I+——-P——[I+H—’EJ2&HA
Po'o 2ep ] po
Similarly,
!A,-MISIA;,,"|+-—£—[1+—HLE]2&H‘
Poo\ 268 ) po
and substituting this into the previous inequality we obtain
|A,jist.4,-,,qa+—p-[1+ﬁ—’2}4ﬁ H.
Polo\  28P ) po
and so on, until we obtain the inequality
IA,}ISIA,-,,”HL(I+£:E-]2££”-(!+1)H.
Pofo\ 28D, Po

Since the total number of stages /+ 1 is not greater than N—n, and by (2.14) and (2.18) |4,, | satisfies
(2.12) with ¢, =2, we find that

14,15 £ (1+H—’2J2[1+&]=L(1+ il }cz. (2.29)
M 2ep Po Poco 2epy

This establishes estimate (2.12) in the general case, which completes the proof of the lemma.

Lemma 3. If the conditions of Lemmas 1 and 2 are satisfied and, in addition, N = max {N,, N,}, where

2 \Bl(Cry)
N, 2(1{’_""_2] . N,

rc

2s—r——=-In Ny, 2.30

pn 2pA0-17B) " N (2.30)
then

max I, - at,|< 22w, (2.31)

izn poro

and

Oy 2¢4 =—P_G—_ l—exp[—ﬁ] i (2.32)

2pr Po
Proof. We will prove (2.31). From (1.22) and (1.12) we find that
o -, = An+l.r'wu+l = An+1.iwn‘?n' {233)

By virtue of (1.11) and (5), the last factor on the right-hand side of (2.33) has the form
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hr,:' Hr;:' ¢
g, =|1- 711+ P "
2£pn 28pn+l

Condition (2.2) of Lemma 1 ensures that inequality (2.7) holds and this, in turn, leads to the first factor in
g, being positive. Thus, from (2), (2.1) and (2.4), we have

_ Y, H Y
lq,,l-q,,S(l 285)(1+2€5]

Substituting this bound and the bound (2.12) into (2.33), we obtain

o -aﬂls&w,{l-”—r"_]. (2.34)
Po’o 2¢p

whence we obtain (2.31).
Note that, by (2.5) and (2.4), (2.34) implies that:

o, —a, |¢—-—-2-q (2.35)
Pofy

We will now prove (2.32). We have
oy =0, +(ay=-o,)za,-lay—o,l
Using (2.3), (2.35) and (2.8), we find that
i 2Pcy _n
o 222 (14~ Vuz e B8 B (2.36)
Polo pr Poho

Since

'lnPEZr for 0<t<l,
-1

allowing for (2.4) and (5) we have

g" =exp (-—nln-‘-;_-) < exp[— h%) = exp(—a—eﬁv} ;
Let the grid (5) be such that
' Celn N<A. (2.37)
Then 8 = Ce In N and, from (2.2) and (2.30), we find that

7" < exp{— Cly Iy } = N"O/F g Ny C0lP o _B0T0 L
p 4p re,

Hence under the condition (2.37), (2.36) implies (2.32).
But if, instead of (2.37), we have Ce In N= 4, everything is much simpler and bounds for o, must be
found in a different way. Since in that case e =A4/(C In N), using (2.30) we have

Hr' _ HF FCInN CFinN,

I

2ep7 ~ 2ep,  2A(I-11B)poN ~ 2A(1=17 B)pyN,

and therefore g, of (1.11) is positive not only for k=1, 2, .. ., n, which follows from (2.2) and (2.7), but
also for k=n-+1, ..., N—1. Hence from (1.12) we see that w; is positive, and from (1.13) we see that
«; is monotonely increasing foralli=1, 2, . . ., N. Thus, in particular, o, = o, and this, together with (2.3),
leads to the inequality

el P" L1~ (2.38)

Then, as before, since hn =4 we have




A study of difference schemes 1075

: [ nh?] [ AF] [ AF]
gn Sexp| =—— |=exp| —— |Sexp| —— |,
€py ) Po

for & < 1. This, together with (2.38), gives (2.32), which proves the lemma.

3. BOUNDS FOR GREEN’S FUNCTION AND CONVERGENCE

We now have everything we need to establish a uniform bound for Green’s function with respect to &.
Theorem 2. Under the conditions of Lemmas 1-3,
1G(x;, &)< s, 3.1
where ¢; = ¢s( p, r) (cf. (3.3)) and is independent of N and &.

Proof. We first find a bound for G(x,, ) for j = n, and then for j <n.
a. Letj=n. From (1.25), and Lemmas 2 and 3 we find that

5o, [1%h i<j, jz2n,
LBy L£2 4P 3.2
1G(x;. &)< PoloCs -Eo—lajl, izjzn (.2)
If i=n, by Lemma I, a; <, but if i > n, then
lol=lee, + (0 —a NS o, Hoy —a, |,
so that in any case
lo 1< o, +lo; —o .
From this and (2.3) and (2.35) it follows that
lols pey FH{(pony ).
Bounds for | a;| are found in exactly the same way. Together with (3.2), they give the bound
pick
1G(x;. &S ¢5 E'TTL* jzn (3.3)
' Polp Cs

b. We now find bounds for G(x;, £;) when j <n. We will use representations (1.20). We start with the
bounds for (ay — ;). We have

oy —0; =(ay-a,)+(,—o;)

Bounds for the first term on the right-hand side can be found using (2.31), and by virtue of (1.22) the
second has the form

@, =0 = WA,

Since j <, by Lemma 1, ¢;>0 and 4., , has a bound of the form (2.14) with 4 instead of H. Bearing all
this in mind, we will have

' r} hrn
loy —a;I< m["zwn"‘[l"‘ﬁ)wm]- (3.4)
Then, by Lemma 1, the function w, is decreasing for j < n and thus w, < w; ;. Substituting this bound into
(3.4) and reducing the accuracy slightly, we finally obtain

P hi
a—ayis 222 14 2 (3.5)

We will prove that the values (o, — @;) in which we are interested have exactly the same bound. In fact
if i <n, then we need only replace j by i in (3.5). But since (&, — ;) occurs in (1.20) only for i =}, and
w; is a decreasing function, we can put w,, ; instead of w,,, in the new bound for |y — o;].

But if i > n, then (o, — ;)= (ay—a,) + (a, — @,) and inequality (2.31) is applicable to both terms, by
virtue of which |y — o;| = [2pe,/( pyto)]w,. A bound for the right-hand side of this inequality in terms of
the right-hand side of (3.4) is obtained similarly.
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Finally, we find bounds for o; and a;. Since a; occurs in (1.20) only when i =, and the function a,
by Lemma 1, is increasing for i =n, from (2.3) we have

at-gajians’.'—?f(ﬂofn}. (3.6)

Thus, all the preliminary bounds have been obtained. We now substitute (3.6), (3.3) and the analogue
of (3.5) for (ay— ;) into (1.20). If we then allow for the fact that

h
14 D 2(“}'&]
zep}"!d-} 25!_7
and that o, satisfies (2.32), we obtain the bound

25%, .
1G(x;, €< , j<n,
. ng'ozﬁ

which, as is easily scen (cf. the definition of ¢, in (2.29), for example), is not worse than (3.3). This proves
the theorem.
We have everything we need to prove Theorem 1. Let

z=u'—u,.

where u, and u! are the exact solution of problem (1) and the approximate solutions at grid nodes. Then,
as usual,

L'z = v, x; €0, z-zy=0,

where s, =" — L"u, = e[( p"u:)s— (pu')’ 1, + r.[u; — u'], is the approximation error for problem (6).
By (1.4)

z(x;) = (G(x;, 75; ) \P’(éj )
Hence, from Theorem 2, we obtain the bound

Now repeating the arguments used in [3] to prove Theorem 4 in a simpler form, we can see that
= ~21.2
Ilwlimm =O(N“In“N)
uniformly with respect to e. This bound, together with (3.7), completes the proof of Theorem 1.

Remarks. 2. As we can see from the analysis of Eq. (1) with constant coefficients and a zero right-hand side, the
factor In* N cannot be omitted from the estimate of accuracy of the difference scheme (6) on the grid (5).

3. From the same example we see that, in the best case, condition (7) can be relaxed without affecting the result
only up to C=2p(0)/r(0).

4. If the grid is uniform, then ;= 0.5 (u, + u;). This is not true on a non-uniform grid. The analysis of the above
example shows that replacing % in (6) by 0.5 (1" + u?) destroys the uniform convergence with respect to &, even
though this replacement actually only affects the equation with i = n. Replacing ¢, in (6) by (hu’ + Hut),/(2h,) has
the s?me;! zeffect. It is easy to see that the last expression approximates u'(x,) on a non-uniform grid with error
OH*+ ).

5. If instead of (2), the coefficient r(x) of Eq. (1) satisfies the condition r(x) < —r, <0, then Theorem 1 remains
true when the grid (2 of (5) is replaced by a grid ()’ which clusters, like {2, but at the right-hand end of the interval [0,
1], and the parameter C is replaced by C > 2p(1)/|#(1)|.

6. If the problem for the conjugate equation to (1) is approximated with the help of the adjoint operator (1.5) to
1 of (6) in the sense (1.3), Theorem 1 remains true for the grid {)' of Remark 5.

4. NUMERICAL RESULTS

We will now give results to illustrate the accuracy of the scheme. It is easy to see that the function

-xle _ -1/

. X
u(x)= —l-_-?-ﬁ—-i- 2x cosT

is a solution of the problem
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Table 1
N )
i 102 104 1076 1o*
8 0.00211 0.08554 0.09580 0.09596 0.09596
40 3.2 33 32 3.2
16 0.00053 0.02672 0.02946 0.02955 0.02955
40 3.1 32 3.2 32
12 0.00013 0.00850 0.00922 0.00929 0.00929
4.0 3.1 32 32 32
64 0.00003 0.00271 0.00287 0.00292 0.00292
4.0 3.1 3.3 3.2 32
128 0.00001 0.00086 0.00088 0.00091 0.00001
40 3.2 32 3.2 32
256 0.00000 0.00027 0.00027 0.00028 0.00028
Table 2
i x; 13 i X; z;
0 0.00000 0.00000 1 0.10053 -0.01210
i 0.00005 —0.01608 12 0.20047 —0.00562
2 0.00011 -0.02010 13 0.30041 —0.00757
3 0.00017 —0.01972 14 0.40035 ~0.00161
4 0.00023 -0.01810 15 0.50029 —0.00418
5 0.00029 -0.01647 16 0.60023 0.00092
6 0.00035 -0.01516 17 0.70017 -0.00253
7 0.00041 001422 18 0.80011 0.00153
8 0.00047 -0.01359 19 0.90005 —0.00295
9 0.00053 -0.01318 20 1.00000 0.00000
10 0.00059 -0.01292
2! :
|
i
!
|
]
I
|
I
|
I
|
|
0' D
16=0 000599 7
Fig. 1.
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eu"+u'=-f(x), 0<x«], w0 =1, u(1)=0,
with right-hand side

2
f(x)= [ 87‘2 .. 2)005—?—+n{2&+ x)sin —';—"‘-

This problem was solved on the grid (5) with B = 1/2, that is, with the same number of nodes in and
outside the “boundary layer”. The parameter A was taken equal to 1/2, and C=2. Table 1 gives the values
of the L’ -norm of the error of the solution for different £ and N and the rate at which the error decreases
when the number of nodes is doubled (the second number in each row). A row by row analysis of Table 1
for each N shows that the error stabilizes as £ — 0, reflecting the uniform convergence. It is clear from the
columns of Table 1 that the rate of convergence is not less than the predicted value, as even when N=128
we obtain {(N~' In N)/[(2N)~' In(2N)]}* = 3.06.

Table 2 gives the pointwise error of the solution for £ =107 and N =20. Clearly, on a fine mesh the
error in the “boundary layer” changes smoothly without oscillating, whereas on a coarse grid small
oscillations of the error are observed outside the “boundary layer”, reflecting non-monotonicity of the
scheme. The solid curve in Fig. 1 depicts the exact solution for ¢ = 107%, and the circles the approximate
solution for N=20. The scale in the boundary layer of width 8 =2¢ In N has been increased for clarity.

REFERENCES

1. VASIL'YEVA A. B. and BUTUZOV V. F., Asymptotic Expansions of the Solutions of Singularly Perturbed Equations.
Nauka, Moscow, 1973.

2. DOOLANE. P, MILLER J. J. H. and SCHILDERS W. H. A., Uniform Numerical Methods for Problems with Initial and
Boundary Layers. Boole Press, Dun Laoghaire, 1980.

3. ANDREYEV V. B. and SAVIN I. A, The uniform convergence with respect to a small parameter of A. A, Samarskii's
monotone scheme and its modification. Zh. Wychisl. Mat. Mat. Fiz. 35, 739752, 1995,

4. IL'IN A. M., A difference scheme for a differential equation with a small parameter multiplying the highest derivative. Mat.
Zamerki 6, 2, 237-248, 1969.

5. BAKHVALOV N. §,, Optimization of the solution of boundary-value problems in the presence of a boundary layer. Zh.
Vychisl. Mat. Mat. Fiz. 9, 841-859, 1969.

6. SHISHKIN G. L, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations. Tzd. Ross. Akad. Nauk,
UrO, Ekaterinburg, 1992.

7. SAMARSKII A. A, The Theory of Difference Schemes. Nauka, Moscow, 1989,

8. KELLOG R. B. and TSAN A., Analysis of some difference approximations for a singular perturbation problem without
turning points. Math. Comput. 32, 144, 1025-1039, 1978.



